मराठी

Show that Y = Ae2x + Be−X is a Solution of the Differential Equation D 2 Y D X 2 − D Y D X − 2 Y = 0 - Mathematics

Advertisements
Advertisements

प्रश्न

Show that y = ae2x + be−x is a solution of the differential equation \[\frac{d^2 y}{d x^2} - \frac{dy}{dx} - 2y = 0\]

बेरीज

उत्तर

We have,

\[y = a e^{2x} + b e^{- x}...........(1)\]

Differentiating both sides of equation (1) with respect to

`x,` we get

\[\frac{dy}{dx} = 2a e^{2x} - b e^{- x}..........(2)\]

Differentiating both sides of equation (2) with respect to

`x,` we get

\[\frac{d^2 y}{d x^2} = 4a e^{2x} + b e^{- x} \]
\[ \Rightarrow \frac{d^2 y}{d x^2} = 2a e^{2x} - b e^{- x} + 2a e^{2x} + 2b e^{- x} \]
\[ \Rightarrow \frac{d^2 y}{d x^2} = \left( 2a e^{2x} - b e^{- x} \right) + 2\left( a e^{2x} + b e^{- x} \right)\]
\[ \Rightarrow \frac{d^2 y}{d x^2} = \frac{dy}{dx} + 2y ..........\left[\text{Using equations (1) and (2)} \right]\]

\[\Rightarrow\frac{d^2 y}{d x^2} - \frac{dy}{dx} - 2y = 0\]

Hence, the given function is the solution to the given differential equation.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 22: Differential Equations - Exercise 22.03 [पृष्ठ २४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 22 Differential Equations
Exercise 22.03 | Q 3 | पृष्ठ २४

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

\[\sqrt{1 + \left( \frac{dy}{dx} \right)^2} = \left( c\frac{d^2 y}{d x^2} \right)^{1/3}\]

Show that the function y = A cos x + B sin x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + y = 0\]


Show that the function y = A cos 2x − B sin 2x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + 4y = 0\].


Differential equation \[\frac{d^2 y}{d x^2} - 3\frac{dy}{dx} + 2y = 0, y \left( 0 \right) = 1, y' \left( 0 \right) = 3\] Function y = ex + e2x


\[\left( x^2 + 1 \right)\frac{dy}{dx} = 1\]

\[\frac{1}{x}\frac{dy}{dx} = \tan^{- 1} x, x \neq 0\]

\[\frac{dy}{dx} = \cos^3 x \sin^2 x + x\sqrt{2x + 1}\]

(sin x + cos x) dy + (cos x − sin x) dx = 0


\[\cos x\frac{dy}{dx} - \cos 2x = \cos 3x\]

\[\frac{dy}{dx} = x e^x - \frac{5}{2} + \cos^2 x\]

\[x\frac{dy}{dx} + 1 = 0 ; y \left( - 1 \right) = 0\]

\[\left( x - 1 \right)\frac{dy}{dx} = 2 x^3 y\]

Solve the differential equation \[\frac{dy}{dx} = e^{x + y} + x^2 e^y\].

\[\frac{dy}{dx} = 1 + x^2 + y^2 + x^2 y^2 , y\left( 0 \right) = 1\]

\[x\frac{dy}{dx} = x + y\]

\[2xy\frac{dy}{dx} = x^2 + y^2\]

(x + 2y) dx − (2x − y) dy = 0


\[\left[ x\sqrt{x^2 + y^2} - y^2 \right] dx + xy\ dy = 0\]

Solve the following initial value problem:-
\[x\frac{dy}{dx} - y = \log x, y\left( 1 \right) = 0\]


Solve the following initial value problem:
\[\frac{dy}{dx} + y \cot x = 4x\text{ cosec }x, y\left( \frac{\pi}{2} \right) = 0\]


Solve the following initial value problem:-

\[\frac{dy}{dx} + 2y \tan x = \sin x; y = 0\text{ when }x = \frac{\pi}{3}\]


Find the curve for which the intercept cut-off by a tangent on x-axis is equal to four times the ordinate of the point of contact.

 

Show that the equation of the curve whose slope at any point is equal to y + 2x and which passes through the origin is y + 2 (x + 1) = 2e2x.


Radium decomposes at a rate proportional to the quantity of radium present. It is found that in 25 years, approximately 1.1% of a certain quantity of radium has decomposed. Determine approximately how long it will take for one-half of the original amount of  radium to decompose?


Verify that the function y = e−3x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + \frac{dy}{dx} - 6y = 0.\]


The price of six different commodities for years 2009 and year 2011 are as follows: 

Commodities A B C D E F

Price in 2009 (₹)

35 80 25 30 80 x
Price in 2011 (₹) 50 y 45 70 120 105

The Index number for the year 2011 taking 2009 as the base year for the above data was calculated to be 125. Find the values of x andy if the total price in 2009 is ₹ 360.


In the following example, verify that the given function is a solution of the corresponding differential equation.

Solution D.E.
xy = log y + k y' (1 - xy) = y2

Find the differential equation whose general solution is

x3 + y3 = 35ax.


Solve the following differential equation.

`dy/dx = x^2 y + y`


Solve the following differential equation.

(x2 − y2 ) dx + 2xy dy = 0


Solve the following differential equation.

`x^2 dy/dx = x^2 +xy - y^2`


Solve the following differential equation.

`(x + y) dy/dx = 1`


The differential equation of `y = k_1e^x+ k_2 e^-x` is ______.


y dx – x dy + log x dx = 0


Select and write the correct alternative from the given option for the question

Bacterial increases at the rate proportional to the number present. If original number M doubles in 3 hours, then number of bacteria will be 4M in


Select and write the correct alternative from the given option for the question

The differential equation of y = Ae5x + Be–5x is


Select and write the correct alternative from the given option for the question 

Differential equation of the function c + 4yx = 0 is


Verify y = log x + c is the solution of differential equation `x ("d"^2y)/("d"x^2) + ("d"y)/("d"x)` = 0


`d/(dx)(tan^-1  (sqrt(1 + x^2) - 1)/x)` is equal to:


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×