मराठी

Solve the Following Initial Value Problem:- D Y D X + 2 Y Tan X = Sin X ; Y = 0 When X = π 3 - Mathematics

Advertisements
Advertisements

प्रश्न

Solve the following initial value problem:-

\[\frac{dy}{dx} + 2y \tan x = \sin x; y = 0\text{ when }x = \frac{\pi}{3}\]

बेरीज

उत्तर

We have, 
\[\frac{dy}{dx} + 2y \tan x = \sin x . . . . . \left( 1 \right)\]
Clearly, it is a linear differential equation of the form 
\[\frac{dy}{dx} + Py = Q\]
\[\text{ where }P = 2\tan x\text{ and }Q = \sin x\]
\[ \therefore I . F . = e^{\int P\ dx} \]
\[ = e^{2\int\tan x dx} \]
\[ = e^{2\log\left| \sec x \right|} = \sec^2 x\]
\[\text{Multiplying both sides of }(1)\text{ by }I.F. = \sec^2 x, \text{ we get }\]
\[ \sec^2 x \left( \frac{dy}{dx} + 2y \tan x \right) = \sec^2 x \times \sin x\]
\[ \Rightarrow \sec^2 x \left( \frac{dy}{dx} + 2y \tan x \right) = \tan x \sec x\]
Integrating both sides with respect to x, we get
\[y \sec^2 x = \int\tan x \sec x dx + C\]
\[ \Rightarrow y \sec^2 x = \sec x + C . . . . . \left( 2 \right)\]
Now, 
\[y\left( \frac{\pi}{3} \right) = 0\]
\[ \therefore 0 \left( \sec\frac{\pi}{3} \right)^2 = \sec\frac{\pi}{3} + C\]
\[ \Rightarrow C = - 2\]
\[\text{ Putting the value of C in }\left( 2 \right),\text{ we get }\]
\[y \sec^2 x = \sec x - 2\]
\[ \Rightarrow y = \cos x - 2 \cos^2 x\]
\[\text{ Hence, }y = \cos x - 2 \cos^2 x\text{ is the required solution.}\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 22: Differential Equations - Exercise 22.10 [पृष्ठ १०७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 22 Differential Equations
Exercise 22.10 | Q 37.09 | पृष्ठ १०७

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

\[x^2 \left( \frac{d^2 y}{d x^2} \right)^3 + y \left( \frac{dy}{dx} \right)^4 + y^4 = 0\]

Show that the function y = A cos x + B sin x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + y = 0\]


Show that Ax2 + By2 = 1 is a solution of the differential equation x \[\left\{ y\frac{d^2 y}{d x^2} + \left( \frac{dy}{dx} \right)^2 \right\} = y\frac{dy}{dx}\]

 


Differential equation \[\frac{d^2 y}{d x^2} + y = 0, y \left( 0 \right) = 0, y' \left( 0 \right) = 1\] Function y = sin x


Differential equation \[\frac{d^2 y}{d x^2} + y = 0, y \left( 0 \right) = 1, y' \left( 0 \right) = 1\] Function y = sin x + cos x


Differential equation \[\frac{d^2 y}{d x^2} - 3\frac{dy}{dx} + 2y = 0, y \left( 0 \right) = 1, y' \left( 0 \right) = 3\] Function y = ex + e2x


\[\frac{dy}{dx} = \tan^{- 1} x\]


(sin x + cos x) dy + (cos x − sin x) dx = 0


\[\sin^4 x\frac{dy}{dx} = \cos x\]

x cos2 y  dx = y cos2 x dy


\[y\sqrt{1 + x^2} + x\sqrt{1 + y^2}\frac{dy}{dx} = 0\]

\[\frac{dy}{dx} = 1 - x + y - xy\]

Solve the following differential equation:
\[\text{ cosec }x \log y \frac{dy}{dx} + x^2 y^2 = 0\]


\[\frac{dy}{dx} = y \tan x, y\left( 0 \right) = 1\]

\[2x\frac{dy}{dx} = 5y, y\left( 1 \right) = 1\]

\[\frac{dy}{dx} = 1 + x^2 + y^2 + x^2 y^2 , y\left( 0 \right) = 1\]

Find the particular solution of the differential equation \[\frac{dy}{dx} = - 4x y^2\]  given that y = 1, when x = 0.


\[\frac{dy}{dx} = \frac{y - x}{y + x}\]

3x2 dy = (3xy + y2) dx


Solve the following initial value problem:-

\[\frac{dy}{dx} + y\cot x = 2\cos x, y\left( \frac{\pi}{2} \right) = 0\]


The differential equation of the ellipse \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = C\] is


The differential equation satisfied by ax2 + by2 = 1 is


Solve the following differential equation : \[\left( \sqrt{1 + x^2 + y^2 + x^2 y^2} \right) dx + xy \ dy = 0\].


In the following verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation:-

`y=sqrt(a^2-x^2)`              `x+y(dy/dx)=0`


Find the coordinates of the centre, foci and equation of directrix of the hyperbola x2 – 3y2 – 4x = 8.


Find the equation of the plane passing through the point (1, -2, 1) and perpendicular to the line joining the points A(3, 2, 1) and B(1, 4, 2). 


Choose the correct option from the given alternatives:

The solution of `1/"x" * "dy"/"dx" = tan^-1 "x"` is


For each of the following differential equations find the particular solution.

(x − y2 x) dx − (y + x2 y) dy = 0, when x = 2, y = 0


For  the following differential equation find the particular solution.

`dy/ dx = (4x + y + 1),

when  y = 1, x = 0


The solution of `dy/ dx` = 1 is ______


A solution of a differential equation which can be obtained from the general solution by giving particular values to the arbitrary constants is called ___________ solution.


Solve `("d"y)/("d"x) = (x + y + 1)/(x + y - 1)` when x = `2/3`, y = `1/3`


State whether the following statement is True or False:

The integrating factor of the differential equation `("d"y)/("d"x) - y` = x is e–x 


Solve: ydx – xdy = x2ydx.


Solve: `("d"y)/("d"x) = cos(x + y) + sin(x + y)`. [Hint: Substitute x + y = z]


Solution of `x("d"y)/("d"x) = y + x tan  y/x` is `sin(y/x)` = cx


There are n students in a school. If r % among the students are 12 years or younger, which of the following expressions represents the number of students who are older than 12?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×