Advertisements
Advertisements
प्रश्न
3x2 dy = (3xy + y2) dx
उत्तर
We have,
\[3 x^2 dy = \left( 3xy + y^2 \right) dx\]
\[ \Rightarrow \frac{dy}{dx} = \frac{3xy + y^2}{3 x^2}\]
This is a homogeneous differential equation .
\[\text{ Putting }y = vx\text{ and }\frac{dy}{dx} = v + x\frac{dv}{dx}, \text{ we get }\]
\[v + x\frac{dv}{dx} = \frac{3v x^2 + v^2 x^2}{3 x^2}\]
\[ \Rightarrow v + x\frac{dv}{dx} = \frac{3v + v^2}{3}\]
\[ \Rightarrow x\frac{dv}{dx} = \frac{v^2}{3}\]
\[ \Rightarrow \frac{3}{v^2}dv = \frac{1}{x}dx\]
Integrating both sides, we get
\[3\int\frac{1}{v^2}dv = \int\frac{1}{x}dx\]
\[ \Rightarrow - 3 \times \frac{1}{v} = \log \left| x \right| + C\]
\[ \Rightarrow - \frac{3}{v} = \log \left| x \right| + C\]
\[\text{ Putting }v = \frac{y}{x},\text{ we get }\]
\[ \Rightarrow \frac{- 3x}{y} = \log \left| x \right| + C\]
\[\text{ Hence, }\frac{- 3x}{y} = \log \left| x \right| + C\text{ is the required solution }.\]
APPEARS IN
संबंधित प्रश्न
Show that the function y = A cos x + B sin x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + y = 0\]
Verify that y = − x − 1 is a solution of the differential equation (y − x) dy − (y2 − x2) dx = 0.
For the following differential equation verify that the accompanying function is a solution:
Differential equation | Function |
\[x\frac{dy}{dx} = y\]
|
y = ax |
tan y dx + sec2 y tan x dy = 0
Find the particular solution of edy/dx = x + 1, given that y = 3, when x = 0.
In a bank principal increases at the rate of 5% per year. An amount of Rs 1000 is deposited with this bank, how much will it worth after 10 years (e0.5 = 1.648).
In a culture the bacteria count is 100000. The number is increased by 10% in 2 hours. In how many hours will the count reach 200000, if the rate of growth of bacteria is proportional to the number present.
The surface area of a balloon being inflated, changes at a rate proportional to time t. If initially its radius is 1 unit and after 3 seconds it is 2 units, find the radius after time t.
The rate of growth of a population is proportional to the number present. If the population of a city doubled in the past 25 years, and the present population is 100000, when will the city have a population of 500000?
The tangent at any point (x, y) of a curve makes an angle tan−1(2x + 3y) with x-axis. Find the equation of the curve if it passes through (1, 2).
Find the equation of the curve which passes through the point (1, 2) and the distance between the foot of the ordinate of the point of contact and the point of intersection of the tangent with x-axis is twice the abscissa of the point of contact.
The rate of increase of bacteria in a culture is proportional to the number of bacteria present and it is found that the number doubles in 6 hours. Prove that the bacteria becomes 8 times at the end of 18 hours.
Define a differential equation.
The differential equation obtained on eliminating A and B from y = A cos ωt + B sin ωt, is
Which of the following is the integrating factor of (x log x) \[\frac{dy}{dx} + y\] = 2 log x?
Which of the following differential equations has y = C1 ex + C2 e−x as the general solution?
y2 dx + (x2 − xy + y2) dy = 0
Verify that the function y = e−3x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + \frac{dy}{dx} - 6y = 0.\]
Form the differential equation of the family of circles having centre on y-axis and radius 3 unit.
Solve the following differential equation.
`y^3 - dy/dx = x dy/dx`
Solve the following differential equation.
`dy/dx + 2xy = x`
The solution of `dy/ dx` = 1 is ______
State whether the following is True or False:
The integrating factor of the differential equation `dy/dx - y = x` is e-x
y2 dx + (xy + x2)dy = 0
y dx – x dy + log x dx = 0
Solve the following differential equation
`yx ("d"y)/("d"x)` = x2 + 2y2
Solve the following differential equation y log y = `(log y - x) ("d"y)/("d"x)`
Solve the following differential equation
`x^2 ("d"y)/("d"x)` = x2 + xy − y2
The solution of differential equation `x^2 ("d"^2y)/("d"x^2)` = 1 is ______
Solve the following differential equation
`y log y ("d"x)/("d"y) + x` = log y
The integrating factor of the differential equation `"dy"/"dx" (x log x) + y` = 2logx is ______.
lf the straight lines `ax + by + p` = 0 and `x cos alpha + y sin alpha = p` are inclined at an angle π/4 and concurrent with the straight line `x sin alpha - y cos alpha` = 0, then the value of `a^2 + b^2` is