मराठी

2xy Dx + (X2 + 2y2) Dy = 0 - Mathematics

Advertisements
Advertisements

प्रश्न

2xy dx + (x2 + 2y2) dy = 0

उत्तर

\[2xy dx + \left( x^2 + 2 y^2 \right) dy = 0\]
\[ \Rightarrow \frac{dy}{dx} = - \frac{2xy}{x^2 + 2 y^2}\]
This is a homogeneous differential equation . 
\[\text{ Putting }y = vx\text{ and }\frac{dy}{dx} = v + x\frac{dv}{dx},\text{ we get }\]
\[v + x\frac{dv}{dx} = - \frac{2v x^2}{x^2 + 2 v^2 x^2}\]
\[ \Rightarrow v + x\frac{dv}{dx} = - \frac{2v}{1 + 2 v^2}\]
\[ \Rightarrow x\frac{dv}{dx} = - \frac{2v}{1 + 2 v^2} - v\]
\[ \Rightarrow x\frac{dv}{dx} = \frac{- 3v - 2 v^3}{1 + 2 v^2}\]
\[ \Rightarrow \frac{1 + 2 v^2}{3v + 2 v^3}dv = - \frac{1}{x}dx\]
Integrating both sides, we get
\[\int\frac{1 + 2 v^2}{3v + 2 v^3}dv = - \int\frac{1}{x}dx\]
\[\text{ Substituting }3v + 2 v^3 = t,\text{ we get }\]
\[3\left( 1 + 2 v^2 \right) dv = dt\]
\[ \therefore \frac{1}{3}\int\frac{dt}{t}dv = - \int\frac{1}{x}dx\]
\[ \Rightarrow \frac{1}{3}\log \left| t \right| = - \log \left| x \right| + \log C\]
\[ \Rightarrow \frac{1}{3}\log \left| 3v + 2 v^3 \right| = - \log \left| x \right| + \log C\]
\[ \Rightarrow \log \left| 3v + 2 v^3 \right| = - 3 \log \left| x \right| + 3 \log C\]
\[ \Rightarrow \log \left| \left( 3v + 2 v^3 \right) \times x^3 \right| = \log C^3 \]
\[ \Rightarrow \left( 3v + 2 v^3 \right) \times x^3 = C^3 \]
\[\text{ Putting }v = \frac{y}{x},\text{ we get }\]
\[ \Rightarrow \left[ \left( 3 \times \frac{y}{x} + 2 \times \frac{y^3}{x^3} \right) \times x^3 \right] = C^3 \]
\[ \Rightarrow 3y x^2 + 2 y^3 = C_1 \]
\[\text{ Hence, }3y x^2 + 2 y^3 = C_1\text{ is the required solution } .\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 22: Differential Equations - Exercise 22.09 [पृष्ठ ८३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 22 Differential Equations
Exercise 22.09 | Q 13 | पृष्ठ ८३

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Prove that:

`int_0^(2a)f(x)dx = int_0^af(x)dx + int_0^af(2a - x)dx`


\[\left( \frac{dy}{dx} \right)^2 + \frac{1}{dy/dx} = 2\]

Show that the function y = A cos 2x − B sin 2x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + 4y = 0\].


Verify that y = cx + 2c2 is a solution of the differential equation 

\[2 \left( \frac{dy}{dx} \right)^2 + x\frac{dy}{dx} - y = 0\].

Verify that y2 = 4a (x + a) is a solution of the differential equations
\[y\left\{ 1 - \left( \frac{dy}{dx} \right)^2 \right\} = 2x\frac{dy}{dx}\]


Show that y = e−x + ax + b is solution of the differential equation\[e^x \frac{d^2 y}{d x^2} = 1\]

 


\[\frac{dy}{dx} = \cos^3 x \sin^2 x + x\sqrt{2x + 1}\]

\[\frac{dy}{dx} - x \sin^2 x = \frac{1}{x \log x}\]

\[\sqrt{a + x} dy + x\ dx = 0\]

\[x\left( x^2 - 1 \right)\frac{dy}{dx} = 1, y\left( 2 \right) = 0\]

\[\frac{dy}{dx} + \frac{1 + y^2}{y} = 0\]

\[\frac{dy}{dx} = \frac{1 + y^2}{y^3}\]

y (1 + ex) dy = (y + 1) ex dx


Solve the following differential equation:
\[\text{ cosec }x \log y \frac{dy}{dx} + x^2 y^2 = 0\]


Solve the following differential equation:
\[xy\frac{dy}{dx} = 1 + x + y + xy\]

 


Solve the following differential equation:
\[y\left( 1 - x^2 \right)\frac{dy}{dx} = x\left( 1 + y^2 \right)\]

 


Solve the following differential equation:
\[y e^\frac{x}{y} dx = \left( x e^\frac{x}{y} + y^2 \right)dy, y \neq 0\]

 


Solve the following differential equation:
\[\left( 1 + y^2 \right) \tan^{- 1} xdx + 2y\left( 1 + x^2 \right)dy = 0\]


\[\frac{dy}{dx} = 2 e^x y^3 , y\left( 0 \right) = \frac{1}{2}\]

\[\cos y\frac{dy}{dx} = e^x , y\left( 0 \right) = \frac{\pi}{2}\]

\[\left( x + y + 1 \right)\frac{dy}{dx} = 1\]

\[\frac{dy}{dx} = \frac{y - x}{y + x}\]

y ex/y dx = (xex/y + y) dy


Solve the following initial value problem:-

\[\frac{dy}{dx} + y \tan x = 2x + x^2 \tan x, y\left( 0 \right) = 1\]


Solve the following initial value problem:
\[\frac{dy}{dx} + y \cot x = 4x\text{ cosec }x, y\left( \frac{\pi}{2} \right) = 0\]


The tangent at any point (x, y) of a curve makes an angle tan−1(2x + 3y) with x-axis. Find the equation of the curve if it passes through (1, 2).


Find the equation of the curve such that the portion of the x-axis cut off between the origin and the tangent at a point is twice the abscissa and which passes through the point (1, 2).


Write the differential equation obtained by eliminating the arbitrary constant C in the equation x2 − y2 = C2.


The solution of the differential equation \[\frac{dy}{dx} - \frac{y\left( x + 1 \right)}{x} = 0\] is given by


Find the particular solution of the differential equation `"dy"/"dx" = "xy"/("x"^2+"y"^2),`given that y = 1 when x = 0


For each of the following differential equations find the particular solution.

(x − y2 x) dx − (y + x2 y) dy = 0, when x = 2, y = 0


For  the following differential equation find the particular solution.

`dy/ dx = (4x + y + 1),

when  y = 1, x = 0


Solve the following differential equation.

`(x + y) dy/dx = 1`


Choose the correct alternative.

Bacteria increases at the rate proportional to the number present. If the original number M doubles in 3 hours, then the number of bacteria will be 4M in


State whether the following is True or False:

The degree of a differential equation is the power of the highest ordered derivative when all the derivatives are made free from negative and/or fractional indices if any.


Solve the differential equation:

`e^(dy/dx) = x`


Solve the following differential equation

`yx ("d"y)/("d"x)` = x2 + 2y2 


For the differential equation, find the particular solution

`("d"y)/("d"x)` = (4x +y + 1), when y = 1, x = 0


Solve `x^2 "dy"/"dx" - xy = 1 + cos(y/x)`, x ≠ 0 and x = 1, y = `pi/2`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×