Advertisements
Advertisements
प्रश्न
उत्तर
We have,
\[\frac{dy}{dx} + \frac{1 + y^2}{y} = 0\]
\[\Rightarrow \frac{dy}{dx} = - \frac{\left( 1 + y^2 \right)}{y}\]
\[ \Rightarrow \frac{dx}{dy} = - \frac{y}{1 + y^2}\]
\[ \Rightarrow dx = \left( - \frac{y}{1 + y^2} \right)dy\]
Integrating both sides, we get
\[\int dx = \int\left( - \frac{y}{1 + y^2} \right)dy\]
\[ \Rightarrow x = \int\left( - \frac{y}{1 + y^2} \right)dy\]
\[\text{ Putting }1 + y^2 = t, \text{ we get }\]
\[2y dy = dt\]
\[ \therefore x = - \frac{1}{2}\int\frac{1}{t}dt\]
\[ \Rightarrow x = - \frac{1}{2}\log\left| t \right| + C\]
\[ \Rightarrow x = - \frac{1}{2}\log\left| 1 + y^2 \right| + C\]
\[ \Rightarrow x + \frac{1}{2}\log\left| 1 + y^2 \right| = C\]
\[\text{ Hence, }x + \frac{1}{2}\log\left| 1 + y^2 \right| =\text{ C is the required solution }.\]
APPEARS IN
संबंधित प्रश्न
Find the differential equation of all the parabolas with latus rectum '4a' and whose axes are parallel to x-axis.
Show that the differential equation of which y = 2(x2 − 1) + \[c e^{- x^2}\] is a solution, is \[\frac{dy}{dx} + 2xy = 4 x^3\]
Form the differential equation of the family of hyperbolas having foci on x-axis and centre at the origin.
Verify that y = 4 sin 3x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + 9y = 0\]
Verify that y2 = 4ax is a solution of the differential equation y = x \[\frac{dy}{dx} + a\frac{dx}{dy}\]
Hence, the given function is the solution to the given differential equation. \[\frac{c - x}{1 + cx}\] is a solution of the differential equation \[(1+x^2)\frac{dy}{dx}+(1+y^2)=0\].
Differential equation \[x\frac{dy}{dx} = 1, y\left( 1 \right) = 0\]
Function y = log x
Differential equation \[\frac{d^2 y}{d x^2} - y = 0, y \left( 0 \right) = 2, y' \left( 0 \right) = 0\] Function y = ex + e−x
C' (x) = 2 + 0.15 x ; C(0) = 100
Solve the following differential equation:
\[y\left( 1 - x^2 \right)\frac{dy}{dx} = x\left( 1 + y^2 \right)\]
x2 dy + y (x + y) dx = 0
y ex/y dx = (xex/y + y) dy
Solve the following initial value problem:-
\[\frac{dy}{dx} - 3y \cot x = \sin 2x; y = 2\text{ when }x = \frac{\pi}{2}\]
The rate of growth of a population is proportional to the number present. If the population of a city doubled in the past 25 years, and the present population is 100000, when will the city have a population of 500000?
In a simple circuit of resistance R, self inductance L and voltage E, the current `i` at any time `t` is given by L \[\frac{di}{dt}\]+ R i = E. If E is constant and initially no current passes through the circuit, prove that \[i = \frac{E}{R}\left\{ 1 - e^{- \left( R/L \right)t} \right\}.\]
Find the equation of the curve which passes through the point (2, 2) and satisfies the differential equation
\[y - x\frac{dy}{dx} = y^2 + \frac{dy}{dx}\]
Write the differential equation obtained eliminating the arbitrary constant C in the equation xy = C2.
The solution of the differential equation \[\frac{dy}{dx} = \frac{ax + g}{by + f}\] represents a circle when
The differential equation \[x\frac{dy}{dx} - y = x^2\], has the general solution
Which of the following is the integrating factor of (x log x) \[\frac{dy}{dx} + y\] = 2 log x?
For each of the following differential equations find the particular solution.
`y (1 + logx)dx/dy - x log x = 0`,
when x=e, y = e2.
Solve the following differential equation.
`x^2 dy/dx = x^2 +xy - y^2`
The differential equation of `y = k_1e^x+ k_2 e^-x` is ______.
Choose the correct alternative.
The solution of `x dy/dx = y` log y is
Solve
`dy/dx + 2/ x y = x^2`
Select and write the correct alternative from the given option for the question
Differential equation of the function c + 4yx = 0 is
Solve the following differential equation
`yx ("d"y)/("d"x)` = x2 + 2y2
The solution of differential equation `x^2 ("d"^2y)/("d"x^2)` = 1 is ______
Given that `"dy"/"dx" = "e"^-2x` and y = 0 when x = 5. Find the value of x when y = 3.
Solve the differential equation `"dy"/"dx" + 2xy` = y
If `y = log_2 log_2(x)` then `(dy)/(dx)` =