Advertisements
Advertisements
प्रश्न
Hence, the given function is the solution to the given differential equation. \[\frac{c - x}{1 + cx}\] is a solution of the differential equation \[(1+x^2)\frac{dy}{dx}+(1+y^2)=0\].
उत्तर
We have,
\[y = \frac{c - x}{1 + cx} .........(1)\]
Differentiating both sides of (1) with respect to x, we get
\[\frac{dy}{dx} = \frac{\left( 1 + cx \right)\left( - 1 \right) - \left( c - x \right)\left( c \right)}{\left( 1 + cx \right)^2}\]
\[ \Rightarrow \frac{dy}{dx} = \frac{- 1 - cx - c^2 + cx}{\left( 1 + cx \right)^2}\]
\[ \Rightarrow \frac{dy}{dx} = - \frac{1 + c^2}{\left( 1 + cx \right)^2} .............\left( 2 \right)\]
Now,
\[\left( 1 + x^2 \right)\frac{dy}{dx} + \left( 1 + y^2 \right)\]
\[ = - \left( 1 + x^2 \right)\frac{\left( 1 + c^2 \right)}{\left( 1 + cx \right)^2} + \left\{ 1 + \frac{\left( c - x \right)^2}{\left( 1 + cx \right)^2} \right\} .........\left[\text{Using }\left( 1 \right)\text{ and }\left( 2 \right) \right]\]
\[ = - \frac{\left( 1 + x^2 \right)\left( 1 + c^2 \right)}{\left( 1 + cx \right)^2} + \frac{\left( 1 + cx \right)^2 + \left( c - x \right)^2}{\left( 1 + cx \right)^2}\]
\[ = - \frac{\left( 1 + x^2 \right)\left( 1 + c^2 \right)}{\left( 1 + cx \right)^2} + \frac{1 + 2cx + c^2 x^2 + c^2 - 2cx + x^2}{\left( 1 + cx \right)^2}\]
\[ = - \frac{\left( 1 + x^2 \right)\left( 1 + c^2 \right)}{\left( 1 + cx \right)^2} + \frac{\left( 1 + x^2 \right) + c^2 \left( 1 + x^2 \right)}{\left( 1 + cx \right)^2}\]
\[ = - \frac{\left( 1 + x^2 \right)\left( 1 + c^2 \right)}{\left( 1 + cx \right)^2} + \frac{\left( 1 + x^2 \right)\left( 1 + c^2 \right)}{\left( 1 + cx \right)^2} = 0\]
\[ \Rightarrow \left( 1 + x^2 \right)\frac{dy}{dx} + \left( 1 + y^2 \right) = 0\]
Hence, the given function is the solution to the given differential equation.
APPEARS IN
संबंधित प्रश्न
Show that the differential equation of which y = 2(x2 − 1) + \[c e^{- x^2}\] is a solution, is \[\frac{dy}{dx} + 2xy = 4 x^3\]
Form the differential equation representing the family of ellipses having centre at the origin and foci on x-axis.
Verify that y = 4 sin 3x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + 9y = 0\]
Show that y = AeBx is a solution of the differential equation
Verify that y = cx + 2c2 is a solution of the differential equation
For the following differential equation verify that the accompanying function is a solution:
Differential equation | Function |
\[x^3 \frac{d^2 y}{d x^2} = 1\]
|
\[y = ax + b + \frac{1}{2x}\]
|
tan y \[\frac{dy}{dx}\] = sin (x + y) + sin (x − y)
2xy dx + (x2 + 2y2) dy = 0
Solve the following initial value problem:-
\[x\frac{dy}{dx} - y = \log x, y\left( 1 \right) = 0\]
Solve the following initial value problem:-
\[\frac{dy}{dx} + y\cot x = 2\cos x, y\left( \frac{\pi}{2} \right) = 0\]
Solve the following initial value problem:-
\[dy = \cos x\left( 2 - y\text{ cosec }x \right)dx\]
A population grows at the rate of 5% per year. How long does it take for the population to double?
The rate of increase in the number of bacteria in a certain bacteria culture is proportional to the number present. Given the number triples in 5 hrs, find how many bacteria will be present after 10 hours. Also find the time necessary for the number of bacteria to be 10 times the number of initial present.
The tangent at any point (x, y) of a curve makes an angle tan−1(2x + 3y) with x-axis. Find the equation of the curve if it passes through (1, 2).
The slope of the tangent at each point of a curve is equal to the sum of the coordinates of the point. Find the curve that passes through the origin.
The solution of the differential equation \[\frac{dy}{dx} = \frac{ax + g}{by + f}\] represents a circle when
In the following verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation:-
y = ex + 1 y'' − y' = 0
Form the differential equation of the family of circles having centre on y-axis and radius 3 unit.
Find the particular solution of the differential equation `"dy"/"dx" = "xy"/("x"^2+"y"^2),`given that y = 1 when x = 0
Solve the following differential equation.
`dy/dx = x^2 y + y`
Solve the following differential equation.
`(x + y) dy/dx = 1`
Solve the following differential equation.
dr + (2r)dθ= 8dθ
Solve the differential equation:
dr = a r dθ − θ dr
Solve
`dy/dx + 2/ x y = x^2`
Solve `("d"y)/("d"x) = (x + y + 1)/(x + y - 1)` when x = `2/3`, y = `1/3`
Solve the following differential equation `("d"y)/("d"x)` = x2y + y
The function y = cx is the solution of differential equation `("d"y)/("d"x) = y/x`
Solve the following differential equation `("d"y)/("d"x)` = x2y + y
Find the particular solution of the following differential equation
`("d"y)/("d"x)` = e2y cos x, when x = `pi/6`, y = 0.
Solution: The given D.E. is `("d"y)/("d"x)` = e2y cos x
∴ `1/"e"^(2y) "d"y` = cos x dx
Integrating, we get
`int square "d"y` = cos x dx
∴ `("e"^(-2y))/(-2)` = sin x + c1
∴ e–2y = – 2sin x – 2c1
∴ `square` = c, where c = – 2c1
This is general solution.
When x = `pi/6`, y = 0, we have
`"e"^0 + 2sin pi/6` = c
∴ c = `square`
∴ particular solution is `square`
Solve the differential equation `"dy"/"dx"` = 1 + x + y2 + xy2, when y = 0, x = 0.
Solution of `x("d"y)/("d"x) = y + x tan y/x` is `sin(y/x)` = cx