मराठी

A Population Grows at the Rate of 5% per Year. How Long Does It Take for the Population to Double? - Mathematics

Advertisements
Advertisements

प्रश्न

A population grows at the rate of 5% per year. How long does it take for the population to double?

उत्तर

Let P0 be the initial population and P be the population at any time t. Then,
\[\frac{dP}{dt} = \frac{5P}{100}\]
\[ \Rightarrow \frac{dP}{dt} = 0 . 05P\]
\[\Rightarrow \frac{dP}{P} = 0 . 05dt \]
Integrating both sides with respect to t, we get
\[\int\frac{dP}{P} = \int0 . 05dt \]
\[\log P = 0 . 05t + C\]
Now,
\[P = P_0\text{ at }t = 0 \]
\[ \therefore \log P_0 = 0 + C\]
\[ \Rightarrow C = \log P_0 \]
Putting the value of C, we get
\[\log P = 0 . 05t + \log P_0 \]
\[ \Rightarrow \log\frac{P}{P_0} = 0 . 05t\]
To find the time when the population will double, we have
\[P = 2 P_0 \]
\[ \therefore \log\frac{2 P_0}{P_0} = 0 . 05t\]
\[ \Rightarrow \log 2 = 0 . 05t\]
\[ \Rightarrow t = \frac{\log 2}{0 . 05} = 20 \log 2\text{ years }\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 22: Differential Equations - Exercise 22.11 [पृष्ठ १३४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 22 Differential Equations
Exercise 22.11 | Q 2 | पृष्ठ १३४

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

\[\frac{d^4 y}{d x^4} = \left\{ c + \left( \frac{dy}{dx} \right)^2 \right\}^{3/2}\]

\[x + \left( \frac{dy}{dx} \right) = \sqrt{1 + \left( \frac{dy}{dx} \right)^2}\]

Show that the function y = A cos 2x − B sin 2x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + 4y = 0\].


Show that Ax2 + By2 = 1 is a solution of the differential equation x \[\left\{ y\frac{d^2 y}{d x^2} + \left( \frac{dy}{dx} \right)^2 \right\} = y\frac{dy}{dx}\]

 


Show that the differential equation of which \[y = 2\left( x^2 - 1 \right) + c e^{- x^2}\]  is a solution is \[\frac{dy}{dx} + 2xy = 4 x^3\]


\[\frac{dy}{dx} = x^5 + x^2 - \frac{2}{x}, x \neq 0\]

(sin x + cos x) dy + (cos x − sin x) dx = 0


\[\cos x\frac{dy}{dx} - \cos 2x = \cos 3x\]

\[x\frac{dy}{dx} + 1 = 0 ; y \left( - 1 \right) = 0\]

x cos2 y  dx = y cos2 x dy


(y + xy) dx + (x − xy2) dy = 0


\[\frac{dy}{dx} = e^{x + y} + e^{- x + y}\]

\[2x\frac{dy}{dx} = 5y, y\left( 1 \right) = 1\]

If y(x) is a solution of the different equation \[\left( \frac{2 + \sin x}{1 + y} \right)\frac{dy}{dx} = - \cos x\] and y(0) = 1, then find the value of y(π/2).


\[\frac{dy}{dx} = \left( x + y + 1 \right)^2\]

(x + 2y) dx − (2x − y) dy = 0


Solve the following differential equations:
\[\frac{dy}{dx} = \frac{y}{x}\left\{ \log y - \log x + 1 \right\}\]


Solve the following initial value problem:-

\[\frac{dy}{dx} + 2y \tan x = \sin x; y = 0\text{ when }x = \frac{\pi}{3}\]


Solve the following initial value problem:-

\[\frac{dy}{dx} + y\cot x = 2\cos x, y\left( \frac{\pi}{2} \right) = 0\]


The surface area of a balloon being inflated, changes at a rate proportional to time t. If initially its radius is 1 unit and after 3 seconds it is 2 units, find the radius after time t.


The population of a city increases at a rate proportional to the number of inhabitants present at any time t. If the population of the city was 200000 in 1990 and 250000 in 2000, what will be the population in 2010?


At every point on a curve the slope is the sum of the abscissa and the product of the ordinate and the abscissa, and the curve passes through (0, 1). Find the equation of the curve.


A curve is such that the length of the perpendicular from the origin on the tangent at any point P of the curve is equal to the abscissa of P. Prove that the differential equation of the curve is \[y^2 - 2xy\frac{dy}{dx} - x^2 = 0\], and hence find the curve.


The normal to a given curve at each point (x, y) on the curve passes through the point (3, 0). If the curve contains the point (3, 4), find its equation.


The slope of a curve at each of its points is equal to the square of the abscissa of the point. Find the particular curve through the point (−1, 1).


Form the differential equation of the family of parabolas having vertex at origin and axis along positive y-axis.


Choose the correct option from the given alternatives:

The solution of `1/"x" * "dy"/"dx" = tan^-1 "x"` is


Determine the order and degree of the following differential equations.

Solution D.E.
y = 1 − logx `x^2(d^2y)/dx^2 = 1`

Find the differential equation whose general solution is

x3 + y3 = 35ax.


Solve the following differential equation.

`(dθ)/dt  = − k (θ − θ_0)`


Solve the following differential equation.

(x2 − y2 ) dx + 2xy dy = 0


Solve the following differential equation.

`dy/dx + 2xy = x`


Choose the correct alternative.

The integrating factor of `dy/dx -  y = e^x `is ex, then its solution is


y dx – x dy + log x dx = 0


Solve the differential equation (x2 – yx2)dy + (y2 + xy2)dx = 0


Find the particular solution of the following differential equation

`("d"y)/("d"x)` = e2y cos x, when x = `pi/6`, y = 0.

Solution: The given D.E. is `("d"y)/("d"x)` = e2y cos x

∴ `1/"e"^(2y)  "d"y` = cos x dx

Integrating, we get

`int square  "d"y` = cos x dx

∴ `("e"^(-2y))/(-2)` = sin x + c1

∴ e–2y = – 2sin x – 2c1

∴ `square` = c, where c = – 2c

This is general solution.

When x = `pi/6`, y = 0, we have

`"e"^0 + 2sin  pi/6` = c

∴ c = `square`

∴ particular solution is `square`


Integrating factor of the differential equation `x "dy"/"dx" - y` = sinx is ______.


Solve the differential equation `"dy"/"dx" + 2xy` = y


There are n students in a school. If r % among the students are 12 years or younger, which of the following expressions represents the number of students who are older than 12?


A man is moving away from a tower 41.6 m high at a rate of 2 m/s. If the eye level of the man is 1.6 m above the ground, then the rate at which the angle of elevation of the top of the tower changes, when he is at a distance of 30 m from the foot of the tower, is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×