मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी वाणिज्य (इंग्रजी माध्यम) इयत्ता १२ वी

Find the particular solution of the following differential equation ("d"y)/("d"x) = e2y cos x, when x = pi/6, y = 0. Solution: The given D.E. is ("d"y)/("d"x) = e2y cos x - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Find the particular solution of the following differential equation

`("d"y)/("d"x)` = e2y cos x, when x = `pi/6`, y = 0.

Solution: The given D.E. is `("d"y)/("d"x)` = e2y cos x

∴ `1/"e"^(2y)  "d"y` = cos x dx

Integrating, we get

`int square  "d"y` = cos x dx

∴ `("e"^(-2y))/(-2)` = sin x + c1

∴ e–2y = – 2sin x – 2c1

∴ `square` = c, where c = – 2c

This is general solution.

When x = `pi/6`, y = 0, we have

`"e"^0 + 2sin  pi/6` = c

∴ c = `square`

∴ particular solution is `square`

रिकाम्या जागा भरा
बेरीज

उत्तर

The given D.E. is `("d"y)/("d"x)` = e2y cos x

∴ `1/"e"^(2y)  "d"y` = cos x dx

Integrating, we get

`int bb("e"^(-2y))  "d"y` = cos x dx

∴ `("e"^(-2y))/(-2)` = sin x + c1

∴ e–2y = – 2sin x – 2c1

e–2y + 2sin x = c, where c = – 2c

This is general solution.

When x = `pi/6`, y = 0, we have

`"e"^0 + 2sin  pi/6` = c

∴ `1 +  2(1/2)` = c

∴ c = 2 

∴ particular solution is e–2y + 2sin x = 2 

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 1.8: Differential Equation and Applications - Q.6

संबंधित प्रश्‍न

Verify that y2 = 4a (x + a) is a solution of the differential equations
\[y\left\{ 1 - \left( \frac{dy}{dx} \right)^2 \right\} = 2x\frac{dy}{dx}\]


\[\left( x - 1 \right)\frac{dy}{dx} = 2 x^3 y\]

\[x\sqrt{1 - y^2} dx + y\sqrt{1 - x^2} dy = 0\]

Solve the following differential equation:
\[xy\frac{dy}{dx} = 1 + x + y + xy\]

 


Solve the following differential equation:
\[\left( 1 + y^2 \right) \tan^{- 1} xdx + 2y\left( 1 + x^2 \right)dy = 0\]


\[\frac{dy}{dx} = 2xy, y\left( 0 \right) = 1\]

\[2\left( y + 3 \right) - xy\frac{dy}{dx} = 0\], y(1) = −2

\[\frac{dy}{dx} = \tan\left( x + y \right)\]

Find the equation of the curve passing through the point \[\left( 1, \frac{\pi}{4} \right)\]  and tangent at any point of which makes an angle tan−1  \[\left( \frac{y}{x} - \cos^2 \frac{y}{x} \right)\] with x-axis.


Find the equation to the curve satisfying x (x + 1) \[\frac{dy}{dx} - y\]  = x (x + 1) and passing through (1, 0).


The slope of a curve at each of its points is equal to the square of the abscissa of the point. Find the particular curve through the point (−1, 1).


The integrating factor of the differential equation (x log x)
\[\frac{dy}{dx} + y = 2 \log x\], is given by


The solution of the differential equation \[\frac{dy}{dx} = \frac{ax + g}{by + f}\] represents a circle when


y2 dx + (x2 − xy + y2) dy = 0


Find the coordinates of the centre, foci and equation of directrix of the hyperbola x2 – 3y2 – 4x = 8.


State whether the following is True or False:

The integrating factor of the differential equation `dy/dx - y = x` is e-x


A solution of differential equation which can be obtained from the general solution by giving particular values to the arbitrary constant is called ______ solution


Verify y = log x + c is the solution of differential equation `x ("d"^2y)/("d"x^2) + ("d"y)/("d"x)` = 0


If `y = log_2 log_2(x)` then `(dy)/(dx)` =


Solve the differential equation

`y (dy)/(dx) + x` = 0


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×