Advertisements
Advertisements
प्रश्न
उत्तर
\[\Rightarrow 2\left( y + 3 \right) = xy\frac{dy}{dx}\]
\[ \Rightarrow \frac{2}{x}dx = \frac{y}{y + 3}dy\]
\[ \Rightarrow \frac{2}{x}dx = \frac{y + 3 - 3}{y + 3}dy\]
\[ \Rightarrow \frac{2}{x}dx = \left( 1 - \frac{3}{y + 3} \right)dy\]
\[ \Rightarrow \int\frac{2}{x}dx = \int\left( 1 - \frac{3}{y + 3} \right)dy\]
\[ \Rightarrow 2\log x = y - 3\log\left| y + 3 \right| + C\]
\[ \Rightarrow \log x^2 + \log\left| \left( y + 3 \right)^3 \right| = y + C\]
\[ \Rightarrow \log\left| \left( x^2 \right) \left( y + 3 \right)^3 \right| = y + C . . . . . \left( 1 \right)\]
\[\Rightarrow \log\left| \left( 1 \right)^2 \left( - 2 + 3 \right)^3 \right| = - 2 + C\]
\[ \Rightarrow C = 2\]
Substituting the value of C in (1), we get
\[\log\left| \left( x^2 \right) \left( y + 3 \right)^3 \right| = y + 2\]
\[ \Rightarrow \left( x^2 \right) \left( y + 3 \right)^3 = e^{y + 2} \]
APPEARS IN
संबंधित प्रश्न
Find the differential equation of all the parabolas with latus rectum '4a' and whose axes are parallel to x-axis.
Show that the differential equation of which y = 2(x2 − 1) + \[c e^{- x^2}\] is a solution, is \[\frac{dy}{dx} + 2xy = 4 x^3\]
Form the differential equation representing the family of ellipses having centre at the origin and foci on x-axis.
For the following differential equation verify that the accompanying function is a solution:
Differential equation | Function |
\[y = \left( \frac{dy}{dx} \right)^2\]
|
\[y = \frac{1}{4} \left( x \pm a \right)^2\]
|
Differential equation \[\frac{d^2 y}{d x^2} + y = 0, y \left( 0 \right) = 0, y' \left( 0 \right) = 1\] Function y = sin x
Differential equation \[\frac{d^2 y}{d x^2} - 2\frac{dy}{dx} + y = 0, y \left( 0 \right) = 1, y' \left( 0 \right) = 2\] Function y = xex + ex
Solve the following differential equation:
\[\text{ cosec }x \log y \frac{dy}{dx} + x^2 y^2 = 0\]
Solve the following differential equation:
\[y\left( 1 - x^2 \right)\frac{dy}{dx} = x\left( 1 + y^2 \right)\]
Find the particular solution of edy/dx = x + 1, given that y = 3, when x = 0.
Find the particular solution of the differential equation \[\frac{dy}{dx} = - 4x y^2\] given that y = 1, when x = 0.
y ex/y dx = (xex/y + y) dy
\[x^2 \frac{dy}{dx} = x^2 + xy + y^2 \]
Solve the following initial value problem:-
\[\frac{dy}{dx} + 2y \tan x = \sin x; y = 0\text{ when }x = \frac{\pi}{3}\]
Solve the following initial value problem:-
\[\frac{dy}{dx} - 3y \cot x = \sin 2x; y = 2\text{ when }x = \frac{\pi}{2}\]
The population of a city increases at a rate proportional to the number of inhabitants present at any time t. If the population of the city was 200000 in 1990 and 250000 in 2000, what will be the population in 2010?
Radium decomposes at a rate proportional to the quantity of radium present. It is found that in 25 years, approximately 1.1% of a certain quantity of radium has decomposed. Determine approximately how long it will take for one-half of the original amount of radium to decompose?
The differential equation obtained on eliminating A and B from y = A cos ωt + B sin ωt, is
Find the particular solution of the differential equation `"dy"/"dx" = "xy"/("x"^2+"y"^2),`given that y = 1 when x = 0
Choose the correct option from the given alternatives:
The differential equation `"y" "dy"/"dx" + "x" = 0` represents family of
Determine the order and degree of the following differential equations.
Solution | D.E |
y = aex + be−x | `(d^2y)/dx^2= 1` |
State whether the following is True or False:
The integrating factor of the differential equation `dy/dx - y = x` is e-x
Select and write the correct alternative from the given option for the question
The differential equation of y = Ae5x + Be–5x is
Solve the differential equation `("d"y)/("d"x) + y` = e−x
Solve `("d"y)/("d"x) = (x + y + 1)/(x + y - 1)` when x = `2/3`, y = `1/3`
For the differential equation, find the particular solution
`("d"y)/("d"x)` = (4x +y + 1), when y = 1, x = 0
A solution of differential equation which can be obtained from the general solution by giving particular values to the arbitrary constant is called ______ solution
The function y = ex is solution ______ of differential equation
Solve the following differential equation
`y log y ("d"x)/("d"y) + x` = log y
Solve the following differential equation `("d"y)/("d"x)` = cos(x + y)
Solution: `("d"y)/("d"x)` = cos(x + y) ......(1)
Put `square`
∴ `1 + ("d"y)/("d"x) = "dv"/("d"x)`
∴ `("d"y)/("d"x) = "dv"/("d"x) - 1`
∴ (1) becomes `"dv"/("d"x) - 1` = cos v
∴ `"dv"/("d"x)` = 1 + cos v
∴ `square` dv = dx
Integrating, we get
`int 1/(1 + cos "v") "d"v = int "d"x`
∴ `int 1/(2cos^2 ("v"/2)) "dv" = int "d"x`
∴ `1/2 int square "dv" = int "d"x`
∴ `1/2* (tan("v"/2))/(1/2)` = x + c
∴ `square` = x + c
Solve `x^2 "dy"/"dx" - xy = 1 + cos(y/x)`, x ≠ 0 and x = 1, y = `pi/2`