मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

Choose the correct option from the given alternatives: The differential equation ydydxxydydx+x=0 represents family of - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Choose the correct option from the given alternatives:

The differential equation `"y" "dy"/"dx" + "x" = 0` represents family of

पर्याय

  • circles

  • parabolas

  • ellipses

  • hyperbolas

MCQ

उत्तर

circles

Hint: 

`"y" "dy"/"dx" + "x" = 0`  ∴ `int "y"  "dy" + int "x"  "dx"` = c

∴ `"y"^2/2 +"x"^2/2 = "c"`

∴ x2 + y2 = 2c which is a circle.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 6: Differential Equations - Miscellaneous exercise 1 [पृष्ठ २१५]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
पाठ 6 Differential Equations
Miscellaneous exercise 1 | Q 1.05 | पृष्ठ २१५

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Prove that:

`int_0^(2a)f(x)dx = int_0^af(x)dx + int_0^af(2a - x)dx`


\[\sqrt[3]{\frac{d^2 y}{d x^2}} = \sqrt{\frac{dy}{dx}}\]

\[\frac{d^4 y}{d x^4} = \left\{ c + \left( \frac{dy}{dx} \right)^2 \right\}^{3/2}\]

\[y\frac{d^2 x}{d y^2} = y^2 + 1\]

Find the differential equation of all the parabolas with latus rectum '4a' and whose axes are parallel to x-axis.


Verify that y = 4 sin 3x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + 9y = 0\]


Hence, the given function is the solution to the given differential equation. \[\frac{c - x}{1 + cx}\] is a solution of the differential equation \[(1+x^2)\frac{dy}{dx}+(1+y^2)=0\].


Differential equation \[x\frac{dy}{dx} = 1, y\left( 1 \right) = 0\]

Function y = log x


Differential equation \[\frac{dy}{dx} = y, y\left( 0 \right) = 1\]
Function y = ex


Differential equation \[\frac{d^2 y}{d x^2} + y = 0, y \left( 0 \right) = 1, y' \left( 0 \right) = 1\] Function y = sin x + cos x


Differential equation \[\frac{d^2 y}{d x^2} - 3\frac{dy}{dx} + 2y = 0, y \left( 0 \right) = 1, y' \left( 0 \right) = 3\] Function y = ex + e2x


\[\left( x^2 + 1 \right)\frac{dy}{dx} = 1\]

\[\frac{dy}{dx} = \frac{1 - \cos x}{1 + \cos x}\]

\[\frac{dy}{dx} = \log x\]

\[\frac{dy}{dx} = \cos^3 x \sin^2 x + x\sqrt{2x + 1}\]

\[\frac{dy}{dx} - x \sin^2 x = \frac{1}{x \log x}\]

\[\frac{dy}{dx} = \frac{1 - \cos 2y}{1 + \cos 2y}\]

\[\left( x - 1 \right)\frac{dy}{dx} = 2 xy\]

(1 + x2) dy = xy dx


\[\left( x - 1 \right)\frac{dy}{dx} = 2 x^3 y\]

xy (y + 1) dy = (x2 + 1) dx


\[5\frac{dy}{dx} = e^x y^4\]

Solve the differential equation \[\frac{dy}{dx} = e^{x + y} + x^2 e^y\].

\[x\frac{dy}{dx} + \cot y = 0\]

\[\frac{dy}{dx} = \frac{x e^x \log x + e^x}{x \cos y}\]

(1 + x) (1 + y2) dx + (1 + y) (1 + x2) dy = 0


\[\frac{dy}{dx} = 1 - x + y - xy\]

\[\frac{dy}{dx} = \left( \cos^2 x - \sin^2 x \right) \cos^2 y\]

Solve the following differential equation: 
(xy2 + 2x) dx + (x2 y + 2y) dy = 0


Solve the following differential equation:
\[\left( 1 + y^2 \right) \tan^{- 1} xdx + 2y\left( 1 + x^2 \right)dy = 0\]


\[\frac{dy}{dx} = 2xy, y\left( 0 \right) = 1\]

Find the particular solution of the differential equation \[\frac{dy}{dx} = - 4x y^2\]  given that y = 1, when x = 0.


In a bank principal increases at the rate of 5% per year. An amount of Rs 1000 is deposited with this bank, how much will it worth after 10 years (e0.5 = 1.648).


If y(x) is a solution of the different equation \[\left( \frac{2 + \sin x}{1 + y} \right)\frac{dy}{dx} = - \cos x\] and y(0) = 1, then find the value of y(π/2).


\[\frac{dy}{dx} + 1 = e^{x + y}\]

y ex/y dx = (xex/y + y) dy


3x2 dy = (3xy + y2) dx


Solve the following differential equations:
\[\frac{dy}{dx} = \frac{y}{x}\left\{ \log y - \log x + 1 \right\}\]


\[\left[ x\sqrt{x^2 + y^2} - y^2 \right] dx + xy\ dy = 0\]

Solve the following initial value problem:-

\[\left( 1 + y^2 \right) dx + \left( x - e^{- \tan^{- 1} y} \right) dx = 0, y\left( 0 \right) = 0\]


Solve the following initial value problem:-

\[\frac{dy}{dx} - 3y \cot x = \sin 2x; y = 2\text{ when }x = \frac{\pi}{2}\]


Solve the following initial value problem:-

\[\frac{dy}{dx} + y\cot x = 2\cos x, y\left( \frac{\pi}{2} \right) = 0\]


The rate of growth of a population is proportional to the number present. If the population of a city doubled in the past 25 years, and the present population is 100000, when will the city have a population of 500000?


The decay rate of radium at any time t is proportional to its mass at that time. Find the time when the mass will be halved of its initial mass.


The slope of the tangent at a point P (x, y) on a curve is \[\frac{- x}{y}\]. If the curve passes through the point (3, −4), find the equation of the curve.


Find the curve for which the intercept cut-off by a tangent on x-axis is equal to four times the ordinate of the point of contact.

 

Find the equation of the curve such that the portion of the x-axis cut off between the origin and the tangent at a point is twice the abscissa and which passes through the point (1, 2).


The x-intercept of the tangent line to a curve is equal to the ordinate of the point of contact. Find the particular curve through the point (1, 1).


Find the solution of the differential equation
\[x\sqrt{1 + y^2}dx + y\sqrt{1 + x^2}dy = 0\]


The differential equation obtained on eliminating A and B from y = A cos ωt + B sin ωt, is


The solution of the differential equation \[\frac{dy}{dx} - \frac{y\left( x + 1 \right)}{x} = 0\] is given by


Which of the following transformations reduce the differential equation \[\frac{dz}{dx} + \frac{z}{x}\log z = \frac{z}{x^2} \left( \log z \right)^2\] into the form \[\frac{du}{dx} + P\left( x \right) u = Q\left( x \right)\]


Which of the following differential equations has y = C1 ex + C2 ex as the general solution?


In the following example, verify that the given function is a solution of the corresponding differential equation.

Solution D.E.
y = xn `x^2(d^2y)/dx^2 - n xx (xdy)/dx + ny =0`

Solve the following differential equation.

`y^3 - dy/dx = x dy/dx`


For  the following differential equation find the particular solution.

`dy/ dx = (4x + y + 1),

when  y = 1, x = 0


Solve the following differential equation.

`dy/dx + y` = 3


Choose the correct alternative.

The differential equation of y = `k_1 + k_2/x` is


The solution of `dy/ dx` = 1 is ______


Choose the correct alternative.

Bacteria increases at the rate proportional to the number present. If the original number M doubles in 3 hours, then the number of bacteria will be 4M in


State whether the following is True or False:

The degree of a differential equation is the power of the highest ordered derivative when all the derivatives are made free from negative and/or fractional indices if any.


Solve the differential equation:

`e^(dy/dx) = x`


Select and write the correct alternative from the given option for the question 

Differential equation of the function c + 4yx = 0 is


Solve the differential equation `("d"y)/("d"x) + y` = e−x 


Solve the following differential equation y2dx + (xy + x2) dy = 0


Solve the following differential equation `("d"y)/("d"x)` = x2y + y


Solve the following differential equation 

sec2 x tan y dx + sec2 y tan x dy = 0

Solution: sec2 x tan y dx + sec2 y tan x dy = 0

∴ `(sec^2x)/tanx  "d"x + square` = 0

Integrating, we get

`square + int (sec^2y)/tany  "d"y` = log c

Each of these integral is of the type

`int ("f'"(x))/("f"(x))  "d"x` = log |f(x)| + log c

∴ the general solution is

`square + log |tan y|` = log c

∴ log |tan x . tan y| = log c

`square`

This is the general solution.


Solve the following differential equation `("d"y)/("d"x)` = cos(x + y)

Solution: `("d"y)/("d"x)` = cos(x + y)    ......(1)

Put `square`

∴ `1 + ("d"y)/("d"x) = "dv"/("d"x)`

∴ `("d"y)/("d"x) = "dv"/("d"x) - 1`

∴ (1) becomes `"dv"/("d"x) - 1` = cos v

∴ `"dv"/("d"x)` = 1 + cos v

∴ `square` dv = dx

Integrating, we get

`int 1/(1 + cos "v")  "d"v = int  "d"x`

∴ `int 1/(2cos^2 ("v"/2))  "dv" = int  "d"x`

∴ `1/2 int square  "dv" = int  "d"x`

∴ `1/2* (tan("v"/2))/(1/2)` = x + c

∴ `square` = x + c


The differential equation of all non horizontal lines in a plane is `("d"^2x)/("d"y^2)` = 0


lf the straight lines `ax + by + p` = 0 and `x cos alpha + y sin alpha = p` are inclined at an angle π/4 and concurrent with the straight line `x sin alpha - y cos alpha` = 0, then the value of `a^2 + b^2` is


If `y = log_2 log_2(x)` then `(dy)/(dx)` =


`d/(dx)(tan^-1  (sqrt(1 + x^2) - 1)/x)` is equal to:


The differential equation (1 + y2)x dx – (1 + x2)y dy = 0 represents a family of:


Solve the differential equation

`x + y dy/dx` = x2 + y2


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×