मराठी

The Slope of the Tangent at a Point P (X, Y) on a Curve is − X Y . If the Curve Passes Through the Point (3, −4), Find the Equation of the Curve. - Mathematics

Advertisements
Advertisements

प्रश्न

The slope of the tangent at a point P (x, y) on a curve is \[\frac{- x}{y}\]. If the curve passes through the point (3, −4), find the equation of the curve.

उत्तर

According to the question, 
\[\frac{dy}{dx} = \frac{- x}{y}\]
\[ \Rightarrow y dy = - x dx \]
ntegrating both sides with respect to x, we get
\[\int y dy = - \int x dx\]
\[ \Rightarrow \frac{y^2}{2} = - \frac{x^2}{2} + C\]
\[\text{ Since the curve passes through }\left( 3, - 4 \right),\text{ it satisfies the above equation . }\]
\[ \therefore \frac{\left( - 4 \right)^2}{2} = - \frac{3^2}{2} + C\]
\[ \Rightarrow 8 = - \frac{9}{2} + C\]
\[ \Rightarrow C = \frac{25}{2}\]
Putting the value of C, we get
\[\frac{y^2}{2} = - \frac{x^2}{2} + \frac{25}{2}\]
\[ \Rightarrow x^2 + y^2 = 25\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 22: Differential Equations - Exercise 22.11 [पृष्ठ १३५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 22 Differential Equations
Exercise 22.11 | Q 13 | पृष्ठ १३५

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Solve the equation for x: `sin^(-1)  5/x + sin^(-1)  12/x = pi/2, x != 0`


Show that the differential equation of which y = 2(x2 − 1) + \[c e^{- x^2}\] is a solution, is \[\frac{dy}{dx} + 2xy = 4 x^3\]


Verify that y = cx + 2c2 is a solution of the differential equation 

\[2 \left( \frac{dy}{dx} \right)^2 + x\frac{dy}{dx} - y = 0\].

Differential equation \[\frac{d^2 y}{d x^2} - \frac{dy}{dx} = 0, y \left( 0 \right) = 2, y'\left( 0 \right) = 1\]

Function y = ex + 1


\[\frac{dy}{dx} = \frac{1 - \cos x}{1 + \cos x}\]

\[\left( x + 2 \right)\frac{dy}{dx} = x^2 + 3x + 7\]

\[\frac{dy}{dx} = \log x\]

\[\frac{dy}{dx} = \sin^2 y\]

\[\frac{dy}{dx} = \frac{x e^x \log x + e^x}{x \cos y}\]

\[\frac{dy}{dx} = \frac{x\left( 2 \log x + 1 \right)}{\sin y + y \cos y}\]

\[x\sqrt{1 - y^2} dx + y\sqrt{1 - x^2} dy = 0\]

y (1 + ex) dy = (y + 1) ex dx


\[\frac{dy}{dx} = e^{x + y} + e^{- x + y}\]

\[xy\frac{dy}{dx} = y + 2, y\left( 2 \right) = 0\]

\[\frac{dy}{dx} = y \sin 2x, y\left( 0 \right) = 1\]

Solve the differential equation \[\left( 1 + x^2 \right)\frac{dy}{dx} + \left( 1 + y^2 \right) = 0\], given that y = 1, when x = 0.


\[\cos^2 \left( x - 2y \right) = 1 - 2\frac{dy}{dx}\]

\[\frac{dy}{dx} = \sec\left( x + y \right)\]

(y2 − 2xy) dx = (x2 − 2xy) dy


\[\left[ x\sqrt{x^2 + y^2} - y^2 \right] dx + xy\ dy = 0\]

Solve the following initial value problem:-
\[x\frac{dy}{dx} - y = \log x, y\left( 1 \right) = 0\]


The rate of growth of a population is proportional to the number present. If the population of a city doubled in the past 25 years, and the present population is 100000, when will the city have a population of 500000?


The population of a city increases at a rate proportional to the number of inhabitants present at any time t. If the population of the city was 200000 in 1990 and 250000 in 2000, what will be the population in 2010?


Find the equation of the curve which passes through the point (3, −4) and has the slope \[\frac{2y}{x}\]  at any point (x, y) on it.


Find the equation of the curve passing through the point (0, 1) if the slope of the tangent to the curve at each of its point is equal to the sum of the abscissa and the product of the abscissa and the ordinate of the point.


The equation of the curve whose slope is given by \[\frac{dy}{dx} = \frac{2y}{x}; x > 0, y > 0\] and which passes through the point (1, 1) is


The differential equation of the ellipse \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = C\] is


Find the equation of the plane passing through the point (1, -2, 1) and perpendicular to the line joining the points A(3, 2, 1) and B(1, 4, 2). 


In the following example, verify that the given function is a solution of the corresponding differential equation.

Solution D.E.
xy = log y + k y' (1 - xy) = y2

In each of the following examples, verify that the given function is a solution of the corresponding differential equation.

Solution D.E.
y = ex  `dy/ dx= y`

Solve the following differential equation.

y2 dx + (xy + x2 ) dy = 0


Solve:

(x + y) dy = a2 dx


Solve

`dy/dx + 2/ x y = x^2`


x2y dx – (x3 + y3) dy = 0


Solve the following differential equation `("d"y)/("d"x)` = x2y + y


Choose the correct alternative:

General solution of `y - x ("d"y)/("d"x)` = 0 is


Verify y = log x + c is the solution of differential equation `x ("d"^2y)/("d"x^2) + ("d"y)/("d"x)` = 0


Given that `"dy"/"dx"` = yex and x = 0, y = e. Find the value of y when x = 1.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×