Advertisements
Advertisements
प्रश्न
Experiments show that radium disintegrates at a rate proportional to the amount of radium present at the moment. Its half-life is 1590 years. What percentage will disappear in one year?
उत्तर
Let the original amount of the radium be N and the amount of radium at any time t be P.
Given:-\[\frac{dP}{dt}\alpha P\]
\[\Rightarrow \frac{dP}{dt} = - aP\]
\[ \Rightarrow \frac{dP}{P} = - adt\]
Integrating both sides, we get
\[ \Rightarrow \log\left| P \right| = - \text{ at }+ C . . . . . \left( 1 \right)\]
Now,
\[P = N\text{ at }t = 0\]
\[\text{ Putting }P = N\text{ and }t = 0\text{ in }\left( 1 \right), \text{ we get }\]
\[\log\left| N \right| = C\]
\[\text{ Putting }C = \log\left| N \right|\text{ in }\left( 1 \right), \text{ we get }\]
\[\log\left| P \right| = - \text{ at }+ \log\left| N \right|\]
\[ \Rightarrow \log\left| \frac{P}{N} \right| = - \text{ at }. . . . . \left( 2 \right)\]
According to the question,
\[P = \frac{1}{2}N\text{ at }t = 1590\]
\[\log\left| \frac{N}{2N} \right| = - 1590a\]
\[ \Rightarrow - \log 2 = - 1590a\]
\[ \Rightarrow a = \frac{1}{1590}\log 2\]
\[\text{ Putting }a = \frac{1}{1590}\log 2\text{ in }\left( 2 \right), \text{ we get }\]
\[\log\left| \frac{P}{N} \right| = - \left( \frac{1}{1590}\log 2 \right)t \]
\[\frac{P}{N} = e^{- \frac{\log 2}{1590}t} . . . . . . . . \left( 3 \right)\]
\[\text{ Putting }t = 1\text{ in }\left( 4 \right) \text{ to find the bacteria after 1 year, we get }\]
\[\frac{P}{N} = 0 . 9996\]
\[ \Rightarrow P = 0 . 9996N\]
\[\text{Percentage of amount disapeared in 1 year }= \left( \frac{N - P}{N} \right) \times 100\% = \frac{N - 0 . 9996N}{N} \times 100 \% = 0 . 04 \%\]
APPEARS IN
संबंधित प्रश्न
Form the differential equation of the family of hyperbolas having foci on x-axis and centre at the origin.
Differential equation \[\frac{d^2 y}{d x^2} - 3\frac{dy}{dx} + 2y = 0, y \left( 0 \right) = 1, y' \left( 0 \right) = 3\] Function y = ex + e2x
The volume of a spherical balloon being inflated changes at a constant rate. If initially its radius is 3 units and after 3 seconds it is 6 units. Find the radius of the balloon after `t` seconds.
y ex/y dx = (xex/y + y) dy
(y2 − 2xy) dx = (x2 − 2xy) dy
2xy dx + (x2 + 2y2) dy = 0
Solve the following initial value problem:-
\[\frac{dy}{dx} + y \tan x = 2x + x^2 \tan x, y\left( 0 \right) = 1\]
The rate of growth of a population is proportional to the number present. If the population of a city doubled in the past 25 years, and the present population is 100000, when will the city have a population of 500000?
In a culture, the bacteria count is 100000. The number is increased by 10% in 2 hours. In how many hours will the count reach 200000, if the rate of growth of bacteria is proportional to the number present?
The rate of increase in the number of bacteria in a certain bacteria culture is proportional to the number present. Given the number triples in 5 hrs, find how many bacteria will be present after 10 hours. Also find the time necessary for the number of bacteria to be 10 times the number of initial present.
A bank pays interest by continuous compounding, that is, by treating the interest rate as the instantaneous rate of change of principal. Suppose in an account interest accrues at 8% per year, compounded continuously. Calculate the percentage increase in such an account over one year.
The decay rate of radium at any time t is proportional to its mass at that time. Find the time when the mass will be halved of its initial mass.
Show that the equation of the curve whose slope at any point is equal to y + 2x and which passes through the origin is y + 2 (x + 1) = 2e2x.
The differential equation
\[\frac{dy}{dx} + Py = Q y^n , n > 2\] can be reduced to linear form by substituting
Verify that the function y = e−3x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + \frac{dy}{dx} - 6y = 0.\]
Form the differential equation representing the family of curves y = a sin (x + b), where a, b are arbitrary constant.
Form the differential equation representing the family of parabolas having vertex at origin and axis along positive direction of x-axis.
In the following example, verify that the given function is a solution of the corresponding differential equation.
Solution | D.E. |
y = xn | `x^2(d^2y)/dx^2 - n xx (xdy)/dx + ny =0` |
For the following differential equation find the particular solution.
`dy/ dx = (4x + y + 1),
when y = 1, x = 0
Solve the following differential equation.
`x^2 dy/dx = x^2 +xy - y^2`
Solve the differential equation:
`e^(dy/dx) = x`
y2 dx + (xy + x2)dy = 0
Solve the differential equation `("d"y)/("d"x) + y` = e−x
Integrating factor of the differential equation `x "dy"/"dx" - y` = sinx is ______.
Solve the differential equation `"dy"/"dx" + 2xy` = y
Solve: ydx – xdy = x2ydx.
Solve: `("d"y)/("d"x) = cos(x + y) + sin(x + y)`. [Hint: Substitute x + y = z]
A man is moving away from a tower 41.6 m high at a rate of 2 m/s. If the eye level of the man is 1.6 m above the ground, then the rate at which the angle of elevation of the top of the tower changes, when he is at a distance of 30 m from the foot of the tower, is
`d/(dx)(tan^-1 (sqrt(1 + x^2) - 1)/x)` is equal to: