मराठी

A Bank Pays Interest by Continuous Compounding, that Is, by Treating the Interest Rate as the Instantaneous Rate of Change of Principal. - Mathematics

Advertisements
Advertisements

प्रश्न

A bank pays interest by continuous compounding, that is, by treating the interest rate as the instantaneous rate of change of principal. Suppose in an account interest accrues at 8% per year, compounded continuously. Calculate the percentage increase in such an account over one year.

बेरीज

उत्तर

Let P0 be the initial amount and P be the amount at any time t.
We have,
\[\frac{dP}{dt} = \frac{8P}{100}\]
\[ \Rightarrow \frac{dP}{dt} = \frac{2P}{25}\]
\[\Rightarrow \frac{dP}{P} = \frac{2}{25}dt\]
Integrating both sides with respect to t, we get
\[\log P = \frac{2}{25}t + C . . . . . \left( 1 \right)\]
Now,
\[P = P_0\text{ at }t = 0 \]
\[ \therefore \log P_0 = 0 + C\]
\[ \Rightarrow C = \log P_0 \]
\[\text{ Putting the value of C in }\left( 1 \right),\text{ we get }\]
\[\log P = \frac{2}{25}t + \log P_0 \]
\[ \Rightarrow \log\frac{P}{P_0} = \frac{2}{25}t\]
\[ \Rightarrow e^{\frac{2}{25}t} = \frac{P}{P_0}\]
To find the amount after 1 year, we have
\[ e^\frac{2}{25} = \frac{P}{P_0}\]
\[ \Rightarrow e^{0 . 08} = \frac{P}{P_0}\]
\[ \Rightarrow 1 . 0833 = \frac{P}{P_0}\]
\[ \Rightarrow P = 1 . 0833 P_0 \]
\[\text{ Percentage increase }= \left( \frac{P - P_0}{P_0} \right) \times 100 % \]
\[ = \left( \frac{1 . 0833 P_0 - P_0}{P_0} \right) \times 100 % \]
\[ = 0 . 0833 \times 100 % \]
\[ = 8 . 33 %\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 22: Differential Equations - Exercise 22.11 [पृष्ठ १३४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 22 Differential Equations
Exercise 22.11 | Q 9 | पृष्ठ १३४

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Solve the equation for x: `sin^(-1)  5/x + sin^(-1)  12/x = pi/2, x != 0`


\[\frac{d^3 x}{d t^3} + \frac{d^2 x}{d t^2} + \left( \frac{dx}{dt} \right)^2 = e^t\]

\[\sqrt{1 + \left( \frac{dy}{dx} \right)^2} = \left( c\frac{d^2 y}{d x^2} \right)^{1/3}\]

\[\frac{d^4 y}{d x^4} = \left\{ c + \left( \frac{dy}{dx} \right)^2 \right\}^{3/2}\]

\[y\frac{d^2 x}{d y^2} = y^2 + 1\]

Assume that a rain drop evaporates at a rate proportional to its surface area. Form a differential equation involving the rate of change of the radius of the rain drop.

 

Verify that y2 = 4ax is a solution of the differential equation y = x \[\frac{dy}{dx} + a\frac{dx}{dy}\]


Hence, the given function is the solution to the given differential equation. \[\frac{c - x}{1 + cx}\] is a solution of the differential equation \[(1+x^2)\frac{dy}{dx}+(1+y^2)=0\].


Show that the differential equation of which \[y = 2\left( x^2 - 1 \right) + c e^{- x^2}\]  is a solution is \[\frac{dy}{dx} + 2xy = 4 x^3\]


Differential equation \[x\frac{dy}{dx} = 1, y\left( 1 \right) = 0\]

Function y = log x


\[\left( x^2 + 1 \right)\frac{dy}{dx} = 1\]

C' (x) = 2 + 0.15 x ; C(0) = 100


\[x\frac{dy}{dx} + y = y^2\]

dy + (x + 1) (y + 1) dx = 0


Solve the following differential equation:
\[y\left( 1 - x^2 \right)\frac{dy}{dx} = x\left( 1 + y^2 \right)\]

 


Find the solution of the differential equation cos y dy + cos x sin y dx = 0 given that y = \[\frac{\pi}{2}\], when x = \[\frac{\pi}{2}\] 

 


\[\frac{dy}{dx} = \tan\left( x + y \right)\]

The surface area of a balloon being inflated, changes at a rate proportional to time t. If initially its radius is 1 unit and after 3 seconds it is 2 units, find the radius after time t.


In a simple circuit of resistance R, self inductance L and voltage E, the current `i` at any time `t` is given by L \[\frac{di}{dt}\]+ R i = E. If E is constant and initially no current passes through the circuit, prove that \[i = \frac{E}{R}\left\{ 1 - e^{- \left( R/L \right)t} \right\}.\]


The rate of increase of bacteria in a culture is proportional to the number of bacteria present and it is found that the number doubles in 6 hours. Prove that the bacteria becomes 8 times at the end of 18 hours.


Write the differential equation obtained eliminating the arbitrary constant C in the equation xy = C2.


Find the solution of the differential equation
\[x\sqrt{1 + y^2}dx + y\sqrt{1 + x^2}dy = 0\]


The differential equation
\[\frac{dy}{dx} + Py = Q y^n , n > 2\] can be reduced to linear form by substituting


The price of six different commodities for years 2009 and year 2011 are as follows: 

Commodities A B C D E F

Price in 2009 (₹)

35 80 25 30 80 x
Price in 2011 (₹) 50 y 45 70 120 105

The Index number for the year 2011 taking 2009 as the base year for the above data was calculated to be 125. Find the values of x andy if the total price in 2009 is ₹ 360.


Choose the correct option from the given alternatives:

The solution of `1/"x" * "dy"/"dx" = tan^-1 "x"` is


Solve the following differential equation.

`dy/dx = x^2 y + y`


Solve the following differential equation.

`dy/dx + y` = 3


Solve the following differential equation.

`(x + a) dy/dx = – y + a`


The differential equation of `y = k_1e^x+ k_2 e^-x` is ______.


Solve the differential equation:

`e^(dy/dx) = x`


x2y dx – (x3 + y3) dy = 0


Solve the following differential equation y log y = `(log  y - x) ("d"y)/("d"x)`


Solve the following differential equation `("d"y)/("d"x)` = x2y + y


Find the particular solution of the following differential equation

`("d"y)/("d"x)` = e2y cos x, when x = `pi/6`, y = 0.

Solution: The given D.E. is `("d"y)/("d"x)` = e2y cos x

∴ `1/"e"^(2y)  "d"y` = cos x dx

Integrating, we get

`int square  "d"y` = cos x dx

∴ `("e"^(-2y))/(-2)` = sin x + c1

∴ e–2y = – 2sin x – 2c1

∴ `square` = c, where c = – 2c

This is general solution.

When x = `pi/6`, y = 0, we have

`"e"^0 + 2sin  pi/6` = c

∴ c = `square`

∴ particular solution is `square`


Integrating factor of the differential equation `"dy"/"dx" - y` = cos x is ex.


Given that `"dy"/"dx" = "e"^-2x` and y = 0 when x = 5. Find the value of x when y = 3.


The differential equation of all non horizontal lines in a plane is `("d"^2x)/("d"y^2)` = 0


The differential equation (1 + y2)x dx – (1 + x2)y dy = 0 represents a family of:


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×