मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी वाणिज्य (इंग्रजी माध्यम) इयत्ता १२ वी

X2y dx – (x3 + y3 ) dy = 0 - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

x2y dx – (x3 + y3) dy = 0

बेरीज

उत्तर

x2y dx – (x3 + y3) dy = 0

∴  x2y dx – (x3 + y3) = dy 

∴  `dy/dx = (x^2y)/(x^3 + y^3)`  …(i)

Put y = tx  …(ii)

Differentiating w.r.t. x, we get

`dy/dx = t + x dt/dx`  …(iii)

Substituting (ii) and (iii) in (i), we get

`t + x dt/dx = (x^2 . tx)/(x^3 + t^3 x^3)`

∴ `t + x dt/dx = (x^3.t)/(x^3(1+t^3))`

∴ `x dt/dx = t/(1+t^3) - t`

∴ `x dt/dx = (t-t-t^4)/(1+t^3)`

∴ `x dt/dx = (-t^4)/(1+t^3)`

∴ `(1+t^3)/t^4dt = - dx/x`

Integrating on both sides, we get

`int(1+t^3)/t^4 dt = - int 1/x dx `

∴ `int (1/t^4 + 1/t) dt = - int 1/x dx`

∴ `int t^-4 dt + int 1/t dt = - int1/x dx`

∴ `t^3/-3 + log |t| = - log |x| + c`

∴ `-1/(3t^3)+ log | t | = - log |x| + c`

∴ `- 1/3 . 1/(y/x)^3 + log|y/x| = - log |x| + c`

∴`x^3/(3y^3) + log |y| - log |x| = - log |x| + c`

∴`log |y| - x^3/ (3y^3) = c`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 8: Differential Equation and Applications - Miscellaneous Exercise 8 [पृष्ठ १७३]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Commerce) [English] 12 Standard HSC Maharashtra State Board
पाठ 8 Differential Equation and Applications
Miscellaneous Exercise 8 | Q 4.12 | पृष्ठ १७३

संबंधित प्रश्‍न

\[\frac{d^2 y}{d x^2} + 4y = 0\]

Form the differential equation of the family of hyperbolas having foci on x-axis and centre at the origin.


Show that y = ax3 + bx2 + c is a solution of the differential equation \[\frac{d^3 y}{d x^3} = 6a\].

 


Verify that y = − x − 1 is a solution of the differential equation (y − x) dy − (y2 − x2) dx = 0.


Differential equation \[\frac{d^2 y}{d x^2} - 2\frac{dy}{dx} + y = 0, y \left( 0 \right) = 1, y' \left( 0 \right) = 2\] Function y = xex + ex


Solve the differential equation \[\frac{dy}{dx} = e^{x + y} + x^2 e^y\].

(ey + 1) cos x dx + ey sin x dy = 0


Solve the differential equation \[x\frac{dy}{dx} + \cot y = 0\] given that \[y = \frac{\pi}{4}\], when \[x=\sqrt{2}\]


\[\frac{dy}{dx} = \frac{y - x}{y + x}\]

Write the differential equation representing the family of straight lines y = Cx + 5, where C is an arbitrary constant.


The solution of the differential equation \[\frac{dy}{dx} = \frac{ax + g}{by + f}\] represents a circle when


Find the equation of the plane passing through the point (1, -2, 1) and perpendicular to the line joining the points A(3, 2, 1) and B(1, 4, 2). 


Solve the following differential equation.

`y^3 - dy/dx = x dy/dx`


For each of the following differential equations find the particular solution.

`y (1 + logx)dx/dy - x log x = 0`,

when x=e, y = e2.


Solve the following differential equation.

(x2 − y2 ) dx + 2xy dy = 0


Solve the following differential equation.

`dy/dx + y` = 3


Solve the following differential equation.

`(x + a) dy/dx = – y + a`


A solution of a differential equation which can be obtained from the general solution by giving particular values to the arbitrary constants is called ___________ solution.


Solve the following differential equation `("d"y)/("d"x)` = cos(x + y)

Solution: `("d"y)/("d"x)` = cos(x + y)    ......(1)

Put `square`

∴ `1 + ("d"y)/("d"x) = "dv"/("d"x)`

∴ `("d"y)/("d"x) = "dv"/("d"x) - 1`

∴ (1) becomes `"dv"/("d"x) - 1` = cos v

∴ `"dv"/("d"x)` = 1 + cos v

∴ `square` dv = dx

Integrating, we get

`int 1/(1 + cos "v")  "d"v = int  "d"x`

∴ `int 1/(2cos^2 ("v"/2))  "dv" = int  "d"x`

∴ `1/2 int square  "dv" = int  "d"x`

∴ `1/2* (tan("v"/2))/(1/2)` = x + c

∴ `square` = x + c


Solution of `x("d"y)/("d"x) = y + x tan  y/x` is `sin(y/x)` = cx


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×