मराठी

Find the Equation of the Plane Passing Through the Point (1, -2, 1) and Perpendicular to the Line Joining the Points A(3, 2, 1) and B(1, 4, 2). - Mathematics

Advertisements
Advertisements

प्रश्न

Find the equation of the plane passing through the point (1, -2, 1) and perpendicular to the line joining the points A(3, 2, 1) and B(1, 4, 2). 

बेरीज

उत्तर

Here, given that the plane passes through the point (1, -2, 1) and it is perpendicular to the line joining the points A(3, 2, 1) and B(1, 4, 2).
Direction ratios of its normal are < 1 – 3, 4 – 2, 2 – 1 > i.e., < -2, 2, 1 >
Hence, the required equation of the plane is
-2(x – 1) + 2(y + 2) + 1(z – 1) = 0
⇒ -2x + 2 + 2y + 4 + z – 1 = 0
⇒ -2x + 2y + z + 5 = 0
or 2x – 2y – z – 5 = 0

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2016-2017 (March) Set 1

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

\[\left( \frac{dy}{dx} \right)^2 + \frac{1}{dy/dx} = 2\]

Verify that y = \[\frac{a}{x} + b\] is a solution of the differential equation
\[\frac{d^2 y}{d x^2} + \frac{2}{x}\left( \frac{dy}{dx} \right) = 0\]


For the following differential equation verify that the accompanying function is a solution:

Differential equation Function
\[x\frac{dy}{dx} + y = y^2\]
\[y = \frac{a}{x + a}\]

\[\left( x^2 + 1 \right)\frac{dy}{dx} = 1\]

\[\frac{dy}{dx} = \cos^3 x \sin^2 x + x\sqrt{2x + 1}\]

\[\frac{dy}{dx} = \frac{1 + y^2}{y^3}\]

Solve the following differential equation:
\[\text{ cosec }x \log y \frac{dy}{dx} + x^2 y^2 = 0\]


Solve the following differential equation:
\[\left( 1 + y^2 \right) \tan^{- 1} xdx + 2y\left( 1 + x^2 \right)dy = 0\]


\[\left( x + y + 1 \right)\frac{dy}{dx} = 1\]

\[\frac{dy}{dx} = \frac{y^2 - x^2}{2xy}\]

\[xy\frac{dy}{dx} = x^2 - y^2\]

Solve the following initial value problem:-

\[y' + y = e^x , y\left( 0 \right) = \frac{1}{2}\]


Solve the following initial value problem:-

\[x\frac{dy}{dx} - y = \left( x + 1 \right) e^{- x} , y\left( 1 \right) = 0\]


Solve the following initial value problem:
\[\frac{dy}{dx} + y \cot x = 4x\text{ cosec }x, y\left( \frac{\pi}{2} \right) = 0\]


A population grows at the rate of 5% per year. How long does it take for the population to double?


In a simple circuit of resistance R, self inductance L and voltage E, the current `i` at any time `t` is given by L \[\frac{di}{dt}\]+ R i = E. If E is constant and initially no current passes through the circuit, prove that \[i = \frac{E}{R}\left\{ 1 - e^{- \left( R/L \right)t} \right\}.\]


The decay rate of radium at any time t is proportional to its mass at that time. Find the time when the mass will be halved of its initial mass.


Find the equation of the curve which passes through the point (2, 2) and satisfies the differential equation
\[y - x\frac{dy}{dx} = y^2 + \frac{dy}{dx}\]


Show that all curves for which the slope at any point (x, y) on it is \[\frac{x^2 + y^2}{2xy}\]  are rectangular hyperbola.


Write the differential equation obtained by eliminating the arbitrary constant C in the equation x2 − y2 = C2.


The integrating factor of the differential equation (x log x)
\[\frac{dy}{dx} + y = 2 \log x\], is given by


The differential equation
\[\frac{dy}{dx} + Py = Q y^n , n > 2\] can be reduced to linear form by substituting


Which of the following is the integrating factor of (x log x) \[\frac{dy}{dx} + y\] = 2 log x?


The integrating factor of the differential equation \[\left( 1 - y^2 \right)\frac{dx}{dy} + yx = ay\left( - 1 < y < 1 \right)\] is ______.


Show that y = ae2x + be−x is a solution of the differential equation \[\frac{d^2 y}{d x^2} - \frac{dy}{dx} - 2y = 0\]


Determine the order and degree of the following differential equations.

Solution D.E.
y = 1 − logx `x^2(d^2y)/dx^2 = 1`

Solve the following differential equation.

`y^3 - dy/dx = x dy/dx`


Solve the following differential equation.

`(x + y) dy/dx = 1`


Solve the following differential equation.

`dy/dx + 2xy = x`


Select and write the correct alternative from the given option for the question 

Differential equation of the function c + 4yx = 0 is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×