Advertisements
Advertisements
प्रश्न
उत्तर
We have,
\[\frac{dy}{dx} = \frac{y^2 - x^2}{2xy}\]
This is a homogeneous differential equation .
\[\text{ Putting }y = vx\text{ and }\frac{dy}{dx} = v + x\frac{dv}{dx},\text{ we get }\]
\[v + x\frac{dv}{dx} = \frac{v^2 x^2 - x^2}{2v x^2}\]
\[ \Rightarrow x\frac{dv}{dx} = \frac{v^2 - 1}{2v} - v\]
\[ \Rightarrow x\frac{dv}{dx} = - \frac{\left( v^2 + 1 \right)}{2v}\]
\[ \Rightarrow \frac{2v}{v^2 + 1}dv = - \frac{1}{x}dx\]
Integrating both sides, we get
\[\int\frac{2v}{v^2 + 1}dv = - \int\frac{1}{x}dx\]
\[\log \left| v^2 + 1 \right| = - \log \left| x \right| + \log C\]
\[ \Rightarrow \log \left| v^2 + 1 \right| = \log \frac{C}{\left| x \right|}\]
\[ \Rightarrow v^2 + 1 = \frac{C}{x}\]
\[\text{ Putting }v = \frac{y}{x}, \text{ we get }\]
\[ \Rightarrow \left( \frac{y}{x} \right)^2 + 1 = \frac{C}{x}\]
\[ \Rightarrow y^2 + x^2 = Cx \]
\[\text{ Hence, }x^2 + y^2 = Cx\text{ is the required solution .}\]
APPEARS IN
संबंधित प्रश्न
Prove that:
`int_0^(2a)f(x)dx = int_0^af(x)dx + int_0^af(2a - x)dx`
Assume that a rain drop evaporates at a rate proportional to its surface area. Form a differential equation involving the rate of change of the radius of the rain drop.
Show that the function y = A cos x + B sin x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + y = 0\]
Verify that \[y = ce^{tan^{- 1}} x\] is a solution of the differential equation \[\left( 1 + x^2 \right)\frac{d^2 y}{d x^2} + \left( 2x - 1 \right)\frac{dy}{dx} = 0\]
Solve the differential equation \[\frac{dy}{dx} = \frac{2x\left( \log x + 1 \right)}{\sin y + y \cos y}\], given that y = 0, when x = 1.
Find the particular solution of edy/dx = x + 1, given that y = 3, when x = 0.
Find the solution of the differential equation cos y dy + cos x sin y dx = 0 given that y = \[\frac{\pi}{2}\], when x = \[\frac{\pi}{2}\]
Find the particular solution of the differential equation \[\frac{dy}{dx} = - 4x y^2\] given that y = 1, when x = 0.
The volume of a spherical balloon being inflated changes at a constant rate. If initially its radius is 3 units and after 3 seconds it is 6 units. Find the radius of the balloon after `t` seconds.
x2 dy + y (x + y) dx = 0
Solve the following initial value problem:-
\[dy = \cos x\left( 2 - y\text{ cosec }x \right)dx\]
Solve the following initial value problem:-
\[\tan x\left( \frac{dy}{dx} \right) = 2x\tan x + x^2 - y; \tan x \neq 0\] given that y = 0 when \[x = \frac{\pi}{2}\]
Find the equation of the curve which passes through the point (2, 2) and satisfies the differential equation
\[y - x\frac{dy}{dx} = y^2 + \frac{dy}{dx}\]
A curve is such that the length of the perpendicular from the origin on the tangent at any point P of the curve is equal to the abscissa of P. Prove that the differential equation of the curve is \[y^2 - 2xy\frac{dy}{dx} - x^2 = 0\], and hence find the curve.
Write the differential equation obtained eliminating the arbitrary constant C in the equation xy = C2.
Integrating factor of the differential equation cos \[x\frac{dy}{dx} + y \sin x = 1\], is
Find the equation of the plane passing through the point (1, -2, 1) and perpendicular to the line joining the points A(3, 2, 1) and B(1, 4, 2).
In the following example, verify that the given function is a solution of the corresponding differential equation.
Solution | D.E. |
y = xn | `x^2(d^2y)/dx^2 - n xx (xdy)/dx + ny =0` |
The solution of `dy/dx + x^2/y^2 = 0` is ______
Solve the differential equation sec2y tan x dy + sec2x tan y dx = 0
Solve the following differential equation `("d"y)/("d"x)` = x2y + y
The function y = ex is solution ______ of differential equation
The integrating factor of the differential equation `"dy"/"dx" (x log x) + y` = 2logx is ______.
Solve the differential equation `dy/dx + xy = xy^2` and find the particular solution when y = 4, x = 1.