मराठी

D Y D X + 2 X = E 3 X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\frac{dy}{dx} + 2x = e^{3x}\]

उत्तर

We have, 
\[\frac{dy}{dx} + 2x = e^{3x} \]
\[ \Rightarrow \frac{dy}{dx} = e^{3x} - 2x\]
\[ \Rightarrow dy = \left( e^{3x} - 2x \right)dx\]
Integrating both sides, we get
\[ \Rightarrow \int dy = \int\left( e^{3x} - 2x \right)dx\]
\[ \Rightarrow y = \frac{e^{3x}}{3} - 2\frac{x^2}{2} + C\]
\[ \Rightarrow y = \frac{e^{3x}}{3} - x^2 + C\]
\[ \Rightarrow y + x^2 = \frac{e^{3x}}{3} + C\]
\[So, y + x^2 = \frac{e^{3x}}{3} + \text{ C is defined for all }x \in R . \]
\[\text{ Hence,} y + x^2 = \frac{e^{3x}}{3} +\text{ C, where } x \in R,\text{ is the solution to the given differential equation }.\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 22: Differential Equations - Exercise 22.05 [पृष्ठ ३४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 22 Differential Equations
Exercise 22.05 | Q 3 | पृष्ठ ३४

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

\[\sqrt[3]{\frac{d^2 y}{d x^2}} = \sqrt{\frac{dy}{dx}}\]

\[x + \left( \frac{dy}{dx} \right) = \sqrt{1 + \left( \frac{dy}{dx} \right)^2}\]

Find the differential equation of all the parabolas with latus rectum '4a' and whose axes are parallel to x-axis.


For the following differential equation verify that the accompanying function is a solution:

Differential equation Function
\[x\frac{dy}{dx} + y = y^2\]
\[y = \frac{a}{x + a}\]

For the following differential equation verify that the accompanying function is a solution:

Differential equation Function
\[y = \left( \frac{dy}{dx} \right)^2\]
\[y = \frac{1}{4} \left( x \pm a \right)^2\]

\[\cos x\frac{dy}{dx} - \cos 2x = \cos 3x\]

x cos y dy = (xex log x + ex) dx


\[x\frac{dy}{dx} + y = y^2\]

xy dy = (y − 1) (x + 1) dx


\[x\frac{dy}{dx} + \cot y = 0\]

\[\frac{dy}{dx} = \frac{x\left( 2 \log x + 1 \right)}{\sin y + y \cos y}\]

Solve the following differential equation: 
(xy2 + 2x) dx + (x2 y + 2y) dy = 0


\[2x\frac{dy}{dx} = 3y, y\left( 1 \right) = 2\]

\[\frac{dy}{dx} = y \sin 2x, y\left( 0 \right) = 1\]

\[\frac{dy}{dx} = y \tan x, y\left( 0 \right) = 1\]

\[xy\frac{dy}{dx} = x^2 - y^2\]

(y2 − 2xy) dx = (x2 − 2xy) dy


\[\left[ x\sqrt{x^2 + y^2} - y^2 \right] dx + xy\ dy = 0\]

Solve the following initial value problem:-

\[\frac{dy}{dx} - 3y \cot x = \sin 2x; y = 2\text{ when }x = \frac{\pi}{2}\]


In a culture, the bacteria count is 100000. The number is increased by 10% in 2 hours. In how many hours will the count reach 200000, if the rate of growth of bacteria is proportional to the number present?


If the marginal cost of manufacturing a certain item is given by C' (x) = \[\frac{dC}{dx}\] = 2 + 0.15 x. Find the total cost function C (x), given that C (0) = 100.

 

Find the equation to the curve satisfying x (x + 1) \[\frac{dy}{dx} - y\]  = x (x + 1) and passing through (1, 0).


Write the differential equation representing the family of straight lines y = Cx + 5, where C is an arbitrary constant.


What is integrating factor of \[\frac{dy}{dx}\] + y sec x = tan x?


Which of the following differential equations has y = C1 ex + C2 ex as the general solution?


y2 dx + (x2 − xy + y2) dy = 0


Form the differential equation of the family of circles having centre on y-axis and radius 3 unit.


For the following differential equation find the particular solution.

`(x + 1) dy/dx − 1 = 2e^(−y)`,

when y = 0, x = 1


Solve the following differential equation.

`(x + y) dy/dx = 1`


Choose the correct alternative.

The differential equation of y = `k_1 + k_2/x` is


Solve the differential equation:

dr = a r dθ − θ dr


Select and write the correct alternative from the given option for the question 

Differential equation of the function c + 4yx = 0 is


A solution of differential equation which can be obtained from the general solution by giving particular values to the arbitrary constant is called ______ solution


Verify y = `a + b/x` is solution of `x(d^2y)/(dx^2) + 2 (dy)/(dx)` = 0

y = `a + b/x`

`(dy)/(dx) = square`

`(d^2y)/(dx^2) = square`

Consider `x(d^2y)/(dx^2) + 2(dy)/(dx)`

= `x square + 2 square`

= `square`

Hence y = `a + b/x` is solution of `square`


Solve `x^2 "dy"/"dx" - xy = 1 + cos(y/x)`, x ≠ 0 and x = 1, y = `pi/2`


The integrating factor of the differential equation `"dy"/"dx" (x log x) + y` = 2logx is ______.


If `y = log_2 log_2(x)` then `(dy)/(dx)` =


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×