Advertisements
Advertisements
प्रश्न
उत्तर
We have,
\[2x\frac{dy}{dx} = 3y, y\left( 1 \right) = 2\]
\[ \Rightarrow \frac{2}{y}dy = \frac{3}{x}dx\]
Integrating both sides, we get
\[2\int\frac{1}{y}dy = 3\int\frac{1}{x}dx\]
\[ \Rightarrow 2 \log \left| y \right| = 3 \log \left| x \right| + \log C\]
\[ \Rightarrow \log \left| y \right|^2 = \log \left| x \right|^3 + \log C\]
\[ \Rightarrow y^2 = C x^3 . . . . (1)\]
It is given that at x = 1, y = 2 .
Substituting the values of x and y in (1), we get
\[C = 4\]
Now, substituting the value of C in (1), we get
\[ \Rightarrow y^2 = 4 x^3 \]
\[\text{Hence,} y^2 = 4 x^3\text{ is the required solution }. \]
APPEARS IN
संबंधित प्रश्न
Form the differential equation representing the family of ellipses having centre at the origin and foci on x-axis.
For the following differential equation verify that the accompanying function is a solution:
Differential equation | Function |
\[x + y\frac{dy}{dx} = 0\]
|
\[y = \pm \sqrt{a^2 - x^2}\]
|
Differential equation \[\frac{d^2 y}{d x^2} - 2\frac{dy}{dx} + y = 0, y \left( 0 \right) = 1, y' \left( 0 \right) = 2\] Function y = xex + ex
tan y dx + sec2 y tan x dy = 0
(1 + x) (1 + y2) dx + (1 + y) (1 + x2) dy = 0
Solve the following differential equation:
\[y\left( 1 - x^2 \right)\frac{dy}{dx} = x\left( 1 + y^2 \right)\]
Solve the following differential equation:
\[\left( 1 + y^2 \right) \tan^{- 1} xdx + 2y\left( 1 + x^2 \right)dy = 0\]
In a bank principal increases at the rate of r% per year. Find the value of r if ₹100 double itself in 10 years (loge 2 = 0.6931).
y ex/y dx = (xex/y + y) dy
3x2 dy = (3xy + y2) dx
(x + 2y) dx − (2x − y) dy = 0
The surface area of a balloon being inflated, changes at a rate proportional to time t. If initially its radius is 1 unit and after 3 seconds it is 2 units, find the radius after time t.
The population of a city increases at a rate proportional to the number of inhabitants present at any time t. If the population of the city was 200000 in 1990 and 250000 in 2000, what will be the population in 2010?
The tangent at any point (x, y) of a curve makes an angle tan−1(2x + 3y) with x-axis. Find the equation of the curve if it passes through (1, 2).
Find the equation to the curve satisfying x (x + 1) \[\frac{dy}{dx} - y\] = x (x + 1) and passing through (1, 0).
If sin x is an integrating factor of the differential equation \[\frac{dy}{dx} + Py = Q\], then write the value of P.
The integrating factor of the differential equation \[x\frac{dy}{dx} - y = 2 x^2\]
The price of six different commodities for years 2009 and year 2011 are as follows:
Commodities | A | B | C | D | E | F |
Price in 2009 (₹) |
35 | 80 | 25 | 30 | 80 | x |
Price in 2011 (₹) | 50 | y | 45 | 70 | 120 | 105 |
The Index number for the year 2011 taking 2009 as the base year for the above data was calculated to be 125. Find the values of x andy if the total price in 2009 is ₹ 360.
In the following example, verify that the given function is a solution of the corresponding differential equation.
Solution | D.E. |
xy = log y + k | y' (1 - xy) = y2 |
The differential equation of `y = k_1e^x+ k_2 e^-x` is ______.
Solve the differential equation:
`e^(dy/dx) = x`
y2 dx + (xy + x2)dy = 0
The function y = ex is solution ______ of differential equation
The function y = cx is the solution of differential equation `("d"y)/("d"x) = y/x`
Given that `"dy"/"dx" = "e"^-2x` and y = 0 when x = 5. Find the value of x when y = 3.
There are n students in a school. If r % among the students are 12 years or younger, which of the following expressions represents the number of students who are older than 12?