मराठी

In a Bank Principal Increases at the Rate of R% per Year. Find the Value of R If ₹100 Double Itself in 10 Years (Loge 2 = 0.6931). - Mathematics

Advertisements
Advertisements

प्रश्न

In a bank principal increases at the rate of r% per year. Find the value of r if ₹100 double itself in 10 years (loge 2 = 0.6931).

उत्तर

Let P be the principal at any instant t.
Given:
\[\frac{dP}{dt} = \frac{r}{100}P\]
\[ \Rightarrow \frac{dP}{P} = \frac{r}{100}dt\]
Integrating both sides, we get
\[\int\frac{dP}{P} = \int\frac{r}{100}dt\]
\[ \Rightarrow \log P = \frac{rt}{100} + C . . . . . . (1)\]
\[\text{ Initially, i . e . at t = 0, let }P = P_0 . \]
\[\text{ Putting }P = P_0 ,\text{ we get }\]
\[\log P_0 = C, \]
\[\text{ Putting }C = \log P_0\text{ in }(1), \text{ we get }\]
\[\log P = \frac{rt}{100} + \log P_0 \]
\[ \Rightarrow \log \frac{P}{P_0} = \frac{rt}{100}\]
\[\text{ Substituting }P_0 = 100, P = 2 P_0 = 200\text{ and }t = 10 \text{ in }(2), \text{ we get }\]
\[\log 2 = \frac{r}{10}\]
\[ \therefore r = 10 \log 2\]
\[ = 10 \times 0 . 6931\]
\[ = 6 . 931\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 22: Differential Equations - Exercise 22.07 [पृष्ठ ५६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 22 Differential Equations
Exercise 22.07 | Q 55 | पृष्ठ ५६

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Verify that y = − x − 1 is a solution of the differential equation (y − x) dy − (y2 − x2) dx = 0.


For the following differential equation verify that the accompanying function is a solution:

Differential equation Function
\[y = \left( \frac{dy}{dx} \right)^2\]
\[y = \frac{1}{4} \left( x \pm a \right)^2\]

Differential equation \[x\frac{dy}{dx} = 1, y\left( 1 \right) = 0\]

Function y = log x


\[\frac{1}{x}\frac{dy}{dx} = \tan^{- 1} x, x \neq 0\]

\[\sqrt{a + x} dy + x\ dx = 0\]

\[x\frac{dy}{dx} + 1 = 0 ; y \left( - 1 \right) = 0\]

\[\frac{dy}{dx} = \frac{1 - \cos 2y}{1 + \cos 2y}\]

Solve the differential equation \[\frac{dy}{dx} = e^{x + y} + x^2 e^y\].

\[\cos x \cos y\frac{dy}{dx} = - \sin x \sin y\]

\[\frac{dy}{dx} = 1 - x + y - xy\]

Solve the following differential equation: 
(xy2 + 2x) dx + (x2 y + 2y) dy = 0


\[2x\frac{dy}{dx} = 5y, y\left( 1 \right) = 1\]

Solve the differential equation \[x\frac{dy}{dx} + \cot y = 0\] given that \[y = \frac{\pi}{4}\], when \[x=\sqrt{2}\]


Find the solution of the differential equation cos y dy + cos x sin y dx = 0 given that y = \[\frac{\pi}{2}\], when x = \[\frac{\pi}{2}\] 

 


\[\frac{dy}{dx}\cos\left( x - y \right) = 1\]

\[\frac{dy}{dx} = \frac{\left( x - y \right) + 3}{2\left( x - y \right) + 5}\]

\[\frac{dy}{dx} + 1 = e^{x + y}\]

\[x\frac{dy}{dx} = x + y\]

(x2 − y2) dx − 2xy dy = 0


2xy dx + (x2 + 2y2) dy = 0


\[\frac{dy}{dx} = \frac{y}{x} - \sqrt{\frac{y^2}{x^2} - 1}\]

In a culture, the bacteria count is 100000. The number is increased by 10% in 2 hours. In how many hours will the count reach 200000, if the rate of growth of bacteria is proportional to the number present?


The tangent at any point (x, y) of a curve makes an angle tan−1(2x + 3y) with x-axis. Find the equation of the curve if it passes through (1, 2).


Find the equation of the curve which passes through the point (3, −4) and has the slope \[\frac{2y}{x}\]  at any point (x, y) on it.


Write the differential equation obtained eliminating the arbitrary constant C in the equation xy = C2.


Integrating factor of the differential equation cos \[x\frac{dy}{dx} + y \sin x = 1\], is


Find the coordinates of the centre, foci and equation of directrix of the hyperbola x2 – 3y2 – 4x = 8.


In the following example, verify that the given function is a solution of the corresponding differential equation.

Solution D.E.
xy = log y + k y' (1 - xy) = y2

For  the following differential equation find the particular solution.

`dy/ dx = (4x + y + 1),

when  y = 1, x = 0


Solve the following differential equation.

y2 dx + (xy + x2 ) dy = 0


Solve the following differential equation.

y dx + (x - y2 ) dy = 0


Solve:

(x + y) dy = a2 dx


`xy dy/dx  = x^2 + 2y^2`


Solve: `("d"y)/("d"x) + 2/xy` = x2 


Solve the following differential equation

`yx ("d"y)/("d"x)` = x2 + 2y2 


Solve the following differential equation

`x^2  ("d"y)/("d"x)` = x2 + xy − y2 


Choose the correct alternative:

Solution of the equation `x("d"y)/("d"x)` = y log y is


State whether the following statement is True or False:

The integrating factor of the differential equation `("d"y)/("d"x) - y` = x is e–x 


Solve the differential equation

`x + y dy/dx` = x2 + y2


Solve the differential equation `dy/dx + xy = xy^2` and find the particular solution when y = 4, x = 1.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×