Advertisements
Advertisements
प्रश्न
In a bank principal increases at the rate of r% per year. Find the value of r if ₹100 double itself in 10 years (loge 2 = 0.6931).
उत्तर
Let P be the principal at any instant t.
Given:
\[\frac{dP}{dt} = \frac{r}{100}P\]
\[ \Rightarrow \frac{dP}{P} = \frac{r}{100}dt\]
Integrating both sides, we get
\[\int\frac{dP}{P} = \int\frac{r}{100}dt\]
\[ \Rightarrow \log P = \frac{rt}{100} + C . . . . . . (1)\]
\[\text{ Initially, i . e . at t = 0, let }P = P_0 . \]
\[\text{ Putting }P = P_0 ,\text{ we get }\]
\[\log P_0 = C, \]
\[\text{ Putting }C = \log P_0\text{ in }(1), \text{ we get }\]
\[\log P = \frac{rt}{100} + \log P_0 \]
\[ \Rightarrow \log \frac{P}{P_0} = \frac{rt}{100}\]
\[\text{ Substituting }P_0 = 100, P = 2 P_0 = 200\text{ and }t = 10 \text{ in }(2), \text{ we get }\]
\[\log 2 = \frac{r}{10}\]
\[ \therefore r = 10 \log 2\]
\[ = 10 \times 0 . 6931\]
\[ = 6 . 931\]
APPEARS IN
संबंधित प्रश्न
Verify that y = − x − 1 is a solution of the differential equation (y − x) dy − (y2 − x2) dx = 0.
For the following differential equation verify that the accompanying function is a solution:
Differential equation | Function |
\[y = \left( \frac{dy}{dx} \right)^2\]
|
\[y = \frac{1}{4} \left( x \pm a \right)^2\]
|
Differential equation \[x\frac{dy}{dx} = 1, y\left( 1 \right) = 0\]
Function y = log x
Solve the following differential equation:
(xy2 + 2x) dx + (x2 y + 2y) dy = 0
Solve the differential equation \[x\frac{dy}{dx} + \cot y = 0\] given that \[y = \frac{\pi}{4}\], when \[x=\sqrt{2}\]
Find the solution of the differential equation cos y dy + cos x sin y dx = 0 given that y = \[\frac{\pi}{2}\], when x = \[\frac{\pi}{2}\]
(x2 − y2) dx − 2xy dy = 0
2xy dx + (x2 + 2y2) dy = 0
In a culture, the bacteria count is 100000. The number is increased by 10% in 2 hours. In how many hours will the count reach 200000, if the rate of growth of bacteria is proportional to the number present?
The tangent at any point (x, y) of a curve makes an angle tan−1(2x + 3y) with x-axis. Find the equation of the curve if it passes through (1, 2).
Find the equation of the curve which passes through the point (3, −4) and has the slope \[\frac{2y}{x}\] at any point (x, y) on it.
Write the differential equation obtained eliminating the arbitrary constant C in the equation xy = C2.
Integrating factor of the differential equation cos \[x\frac{dy}{dx} + y \sin x = 1\], is
Find the coordinates of the centre, foci and equation of directrix of the hyperbola x2 – 3y2 – 4x = 8.
In the following example, verify that the given function is a solution of the corresponding differential equation.
Solution | D.E. |
xy = log y + k | y' (1 - xy) = y2 |
For the following differential equation find the particular solution.
`dy/ dx = (4x + y + 1),
when y = 1, x = 0
Solve the following differential equation.
y2 dx + (xy + x2 ) dy = 0
Solve the following differential equation.
y dx + (x - y2 ) dy = 0
Solve:
(x + y) dy = a2 dx
`xy dy/dx = x^2 + 2y^2`
Solve: `("d"y)/("d"x) + 2/xy` = x2
Solve the following differential equation
`yx ("d"y)/("d"x)` = x2 + 2y2
Solve the following differential equation
`x^2 ("d"y)/("d"x)` = x2 + xy − y2
Choose the correct alternative:
Solution of the equation `x("d"y)/("d"x)` = y log y is
State whether the following statement is True or False:
The integrating factor of the differential equation `("d"y)/("d"x) - y` = x is e–x
Solve the differential equation
`x + y dy/dx` = x2 + y2
Solve the differential equation `dy/dx + xy = xy^2` and find the particular solution when y = 4, x = 1.