Advertisements
Advertisements
प्रश्न
Find the solution of the differential equation cos y dy + cos x sin y dx = 0 given that y = \[\frac{\pi}{2}\], when x = \[\frac{\pi}{2}\]
उत्तर
We have,
\[\cos y dy + \cos x \sin y dx = 0\]
\[ \Rightarrow \cos y dy = - \cos x \sin y dx\]
\[ \Rightarrow \cot y dy = - \cos x dx\]
Integrating both sides, we get
\[\int cot y dy = - \int\cos x dx\]
\[ \Rightarrow \log \left| \sin y \right| = - \sin x + C\]
\[ \Rightarrow \log \left| \sin y \right| + \sin x = C . . . . (1)\]
\[\text{ It is given that at }x = \frac{\pi}{2}, y = \frac{\pi}{2} . \]
\[\text{ Substitutuing the values of x and y in }\left( 1 \right),\text{ we get }\]
\[\log \left| \sin\frac{\pi}{2} \right| + \sin\frac{\pi}{2} = C\]
\[ \Rightarrow C = 1\]
Therefore, substituting the value of C in (1), we get
\[\log \left| \sin y \right| + \sin x = 1\]
\[\text{ Hence, }\log \left| \sin y \right| + \sin x = 1\text{ is the required solution .}\]
APPEARS IN
संबंधित प्रश्न
Prove that:
`int_0^(2a)f(x)dx = int_0^af(x)dx + int_0^af(2a - x)dx`
Show that the function y = A cos x + B sin x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + y = 0\]
Hence, the given function is the solution to the given differential equation. \[\frac{c - x}{1 + cx}\] is a solution of the differential equation \[(1+x^2)\frac{dy}{dx}+(1+y^2)=0\].
Verify that y = log \[\left( x + \sqrt{x^2 + a^2} \right)^2\] satisfies the differential equation \[\left( a^2 + x^2 \right)\frac{d^2 y}{d x^2} + x\frac{dy}{dx} = 0\]
For the following differential equation verify that the accompanying function is a solution:
Differential equation | Function |
\[x + y\frac{dy}{dx} = 0\]
|
\[y = \pm \sqrt{a^2 - x^2}\]
|
For the following differential equation verify that the accompanying function is a solution:
Differential equation | Function |
\[x^3 \frac{d^2 y}{d x^2} = 1\]
|
\[y = ax + b + \frac{1}{2x}\]
|
xy dy = (y − 1) (x + 1) dx
(1 + x) (1 + y2) dx + (1 + y) (1 + x2) dy = 0
Solve the following differential equation:
(xy2 + 2x) dx + (x2 y + 2y) dy = 0
Solve the following differential equation:
\[xy\frac{dy}{dx} = 1 + x + y + xy\]
The volume of a spherical balloon being inflated changes at a constant rate. If initially its radius is 3 units and after 3 seconds it is 6 units. Find the radius of the balloon after `t` seconds.
The surface area of a balloon being inflated, changes at a rate proportional to time t. If initially its radius is 1 unit and after 3 seconds it is 2 units, find the radius after time t.
A population grows at the rate of 5% per year. How long does it take for the population to double?
Show that all curves for which the slope at any point (x, y) on it is \[\frac{x^2 + y^2}{2xy}\] are rectangular hyperbola.
The slope of a curve at each of its points is equal to the square of the abscissa of the point. Find the particular curve through the point (−1, 1).
Verify that the function y = e−3x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + \frac{dy}{dx} - 6y = 0.\]
In the following verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation:-
`y=sqrt(a^2-x^2)` `x+y(dy/dx)=0`
Find the coordinates of the centre, foci and equation of directrix of the hyperbola x2 – 3y2 – 4x = 8.
Solve the differential equation:
`"x"("dy")/("dx")+"y"=3"x"^2-2`
In the following example, verify that the given function is a solution of the corresponding differential equation.
Solution | D.E. |
xy = log y + k | y' (1 - xy) = y2 |
Determine the order and degree of the following differential equations.
Solution | D.E. |
y = 1 − logx | `x^2(d^2y)/dx^2 = 1` |
For each of the following differential equations find the particular solution.
`y (1 + logx)dx/dy - x log x = 0`,
when x=e, y = e2.
Solve the following differential equation.
`xy dy/dx = x^2 + 2y^2`
Solve the following differential equation.
`dy/dx + y = e ^-x`
Solve the following differential equation.
`(x + y) dy/dx = 1`
y2 dx + (xy + x2)dy = 0
State whether the following statement is True or False:
The integrating factor of the differential equation `("d"y)/("d"x) - y` = x is e–x
Solve: `("d"y)/("d"x) = cos(x + y) + sin(x + y)`. [Hint: Substitute x + y = z]
The differential equation of all non horizontal lines in a plane is `("d"^2x)/("d"y^2)` = 0