मराठी

Solve the Differential Equation:"X"("D""Y")/("D""X")+"Y"=3"X"^2-2 - Mathematics

Advertisements
Advertisements

प्रश्न

Solve the differential equation:

`"x"("dy")/("dx")+"y"=3"x"^2-2`

बेरीज

उत्तर

`"x"("dy")/("dx")+"y"=3"x"^2-2`

⇒ `("dy")/("dx")+1/"x" . "y"=3"x"-2/"x""`

which is linear in y     

`"I.F" : e ^(int 1/"x""dx") = e^log"x" ="x"`

General solution is :   

`"y.x"= int(3"x"^2-2)"dx"`

`"xy" = "x"^3-2"x"+"C"`

⇒  `"y" = "x"^2-2+"C"/"x"`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2015-2016 (March)

APPEARS IN

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Show that y = AeBx is a solution of the differential equation

\[\frac{d^2 y}{d x^2} = \frac{1}{y} \left( \frac{dy}{dx} \right)^2\]

Verify that y2 = 4ax is a solution of the differential equation y = x \[\frac{dy}{dx} + a\frac{dx}{dy}\]


For the following differential equation verify that the accompanying function is a solution:

Differential equation Function
\[x^3 \frac{d^2 y}{d x^2} = 1\]
\[y = ax + b + \frac{1}{2x}\]

Differential equation \[\frac{d^2 y}{d x^2} + y = 0, y \left( 0 \right) = 1, y' \left( 0 \right) = 1\] Function y = sin x + cos x


\[\sqrt{1 + x^2} dy + \sqrt{1 + y^2} dx = 0\]

\[\left( x - 1 \right)\frac{dy}{dx} = 2 x^3 y\]

Find the particular solution of the differential equation \[\frac{dy}{dx} = - 4x y^2\]  given that y = 1, when x = 0.


\[\frac{dy}{dx}\cos\left( x - y \right) = 1\]

\[\frac{dy}{dx} = \sec\left( x + y \right)\]

\[\left( x + y + 1 \right)\frac{dy}{dx} = 1\]

\[\frac{dy}{dx} + 1 = e^{x + y}\]

\[\frac{dy}{dx} = \frac{x + y}{x - y}\]

\[x^2 \frac{dy}{dx} = x^2 - 2 y^2 + xy\]

\[\frac{dy}{dx} = \frac{y}{x} - \sqrt{\frac{y^2}{x^2} - 1}\]

In a simple circuit of resistance R, self inductance L and voltage E, the current `i` at any time `t` is given by L \[\frac{di}{dt}\]+ R i = E. If E is constant and initially no current passes through the circuit, prove that \[i = \frac{E}{R}\left\{ 1 - e^{- \left( R/L \right)t} \right\}.\]


Radium decomposes at a rate proportional to the quantity of radium present. It is found that in 25 years, approximately 1.1% of a certain quantity of radium has decomposed. Determine approximately how long it will take for one-half of the original amount of  radium to decompose?


The solution of the differential equation \[\frac{dy}{dx} = \frac{ax + g}{by + f}\] represents a circle when


Determine the order and degree of the following differential equations.

Solution D.E
y = aex + be−x `(d^2y)/dx^2= 1`

Determine the order and degree of the following differential equations.

Solution D.E.
ax2 + by2 = 5 `xy(d^2y)/dx^2+ x(dy/dx)^2 = y dy/dx`

Solve the following differential equation.

x2y dx − (x3 + y3 ) dy = 0


Choose the correct alternative.

The solution of `x dy/dx = y` log y is


Solve the differential equation (x2 – yx2)dy + (y2 + xy2)dx = 0


Choose the correct alternative:

Differential equation of the function c + 4yx = 0 is


The function y = ex is solution  ______ of differential equation


State whether the following statement is True or False:

The integrating factor of the differential equation `("d"y)/("d"x) - y` = x is e–x 


Given that `"dy"/"dx"` = yex and x = 0, y = e. Find the value of y when x = 1.


Given that `"dy"/"dx" = "e"^-2x` and y = 0 when x = 5. Find the value of x when y = 3.


The differential equation of all non horizontal lines in a plane is `("d"^2x)/("d"y^2)` = 0


lf the straight lines `ax + by + p` = 0 and `x cos alpha + y sin alpha = p` are inclined at an angle π/4 and concurrent with the straight line `x sin alpha - y cos alpha` = 0, then the value of `a^2 + b^2` is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×