Advertisements
Advertisements
प्रश्न
Solve the differential equation:
`"x"("dy")/("dx")+"y"=3"x"^2-2`
उत्तर
`"x"("dy")/("dx")+"y"=3"x"^2-2`
⇒ `("dy")/("dx")+1/"x" . "y"=3"x"-2/"x""`
which is linear in y
`"I.F" : e ^(int 1/"x""dx") = e^log"x" ="x"`
General solution is :
`"y.x"= int(3"x"^2-2)"dx"`
`"xy" = "x"^3-2"x"+"C"`
⇒ `"y" = "x"^2-2+"C"/"x"`
APPEARS IN
संबंधित प्रश्न
Show that y = AeBx is a solution of the differential equation
Verify that y2 = 4ax is a solution of the differential equation y = x \[\frac{dy}{dx} + a\frac{dx}{dy}\]
For the following differential equation verify that the accompanying function is a solution:
Differential equation | Function |
\[x^3 \frac{d^2 y}{d x^2} = 1\]
|
\[y = ax + b + \frac{1}{2x}\]
|
Differential equation \[\frac{d^2 y}{d x^2} + y = 0, y \left( 0 \right) = 1, y' \left( 0 \right) = 1\] Function y = sin x + cos x
Find the particular solution of the differential equation \[\frac{dy}{dx} = - 4x y^2\] given that y = 1, when x = 0.
In a simple circuit of resistance R, self inductance L and voltage E, the current `i` at any time `t` is given by L \[\frac{di}{dt}\]+ R i = E. If E is constant and initially no current passes through the circuit, prove that \[i = \frac{E}{R}\left\{ 1 - e^{- \left( R/L \right)t} \right\}.\]
Radium decomposes at a rate proportional to the quantity of radium present. It is found that in 25 years, approximately 1.1% of a certain quantity of radium has decomposed. Determine approximately how long it will take for one-half of the original amount of radium to decompose?
The solution of the differential equation \[\frac{dy}{dx} = \frac{ax + g}{by + f}\] represents a circle when
Determine the order and degree of the following differential equations.
Solution | D.E |
y = aex + be−x | `(d^2y)/dx^2= 1` |
Determine the order and degree of the following differential equations.
Solution | D.E. |
ax2 + by2 = 5 | `xy(d^2y)/dx^2+ x(dy/dx)^2 = y dy/dx` |
Solve the following differential equation.
x2y dx − (x3 + y3 ) dy = 0
Choose the correct alternative.
The solution of `x dy/dx = y` log y is
Solve the differential equation (x2 – yx2)dy + (y2 + xy2)dx = 0
Choose the correct alternative:
Differential equation of the function c + 4yx = 0 is
The function y = ex is solution ______ of differential equation
State whether the following statement is True or False:
The integrating factor of the differential equation `("d"y)/("d"x) - y` = x is e–x
Given that `"dy"/"dx"` = yex and x = 0, y = e. Find the value of y when x = 1.
Given that `"dy"/"dx" = "e"^-2x` and y = 0 when x = 5. Find the value of x when y = 3.
The differential equation of all non horizontal lines in a plane is `("d"^2x)/("d"y^2)` = 0
lf the straight lines `ax + by + p` = 0 and `x cos alpha + y sin alpha = p` are inclined at an angle π/4 and concurrent with the straight line `x sin alpha - y cos alpha` = 0, then the value of `a^2 + b^2` is