मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी वाणिज्य (इंग्रजी माध्यम) इयत्ता १२ वी

Solve the differential equation (x2 – yx2)dy + (y2 + xy2)dx = 0 - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Solve the differential equation (x2 – yx2)dy + (y2 + xy2)dx = 0

बेरीज

उत्तर

(x2 – yx2)dy + (y2 + xy2)dx = 0

∴ x2(1 – y) dy + y2(1 + x) dx = 0

∴ x2(1 – y) dy = – y2(1 + x) dx

∴ `((1 - y)/y^2)  "d"y = -((1 +  x)/x^2)  "d"x`

Integrating on both sides, we get

`int ((1 - y)/y^2)  "d"y = -int((1 + x)/x^2)  "d"x`

∴ `int 1/y^2 "d"y -int 1/y  "d"y = -int 1/x^2  "d"x - int 1/x  "d"x`

∴ `y^(-1)/(-1) - log|y| = (x^(-1)/(-1)) - log|x| + "c"`

∴ `- 1/y - log|y| = 1/x - log|x| + "c"`

∴ log |x| − log |y| = `1/x + 1/y + "c"`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 1.8: Differential Equation and Applications - Q.4

संबंधित प्रश्‍न

\[\frac{d^3 x}{d t^3} + \frac{d^2 x}{d t^2} + \left( \frac{dx}{dt} \right)^2 = e^t\]

\[\frac{d^2 y}{d x^2} + 4y = 0\]

\[y\frac{d^2 x}{d y^2} = y^2 + 1\]

Assume that a rain drop evaporates at a rate proportional to its surface area. Form a differential equation involving the rate of change of the radius of the rain drop.

 

Show that the differential equation of which y = 2(x2 − 1) + \[c e^{- x^2}\] is a solution, is \[\frac{dy}{dx} + 2xy = 4 x^3\]


Show that the function y = A cos x + B sin x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + y = 0\]


Show that the function y = A cos 2x − B sin 2x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + 4y = 0\].


Show that Ax2 + By2 = 1 is a solution of the differential equation x \[\left\{ y\frac{d^2 y}{d x^2} + \left( \frac{dy}{dx} \right)^2 \right\} = y\frac{dy}{dx}\]

 


Show that y = ax3 + bx2 + c is a solution of the differential equation \[\frac{d^3 y}{d x^3} = 6a\].

 


Hence, the given function is the solution to the given differential equation. \[\frac{c - x}{1 + cx}\] is a solution of the differential equation \[(1+x^2)\frac{dy}{dx}+(1+y^2)=0\].


Show that y = ex (A cos x + B sin x) is the solution of the differential equation \[\frac{d^2 y}{d x^2} - 2\frac{dy}{dx} + 2y = 0\]


Verify that y = cx + 2c2 is a solution of the differential equation 

\[2 \left( \frac{dy}{dx} \right)^2 + x\frac{dy}{dx} - y = 0\].

For the following differential equation verify that the accompanying function is a solution:

Differential equation Function
\[x\frac{dy}{dx} = y\]
y = ax

For the following differential equation verify that the accompanying function is a solution:

Differential equation Function
\[y = \left( \frac{dy}{dx} \right)^2\]
\[y = \frac{1}{4} \left( x \pm a \right)^2\]

\[\frac{dy}{dx} = x^2 + x - \frac{1}{x}, x \neq 0\]

(sin x + cos x) dy + (cos x − sin x) dx = 0


\[\frac{dy}{dx} - x \sin^2 x = \frac{1}{x \log x}\]

\[\frac{dy}{dx} = x^5 \tan^{- 1} \left( x^3 \right)\]

\[\cos x\frac{dy}{dx} - \cos 2x = \cos 3x\]

\[\frac{dy}{dx} = \sin^2 y\]

(1 + x2) dy = xy dx


Solve the differential equation \[\frac{dy}{dx} = e^{x + y} + x^2 e^y\].

x cos2 y  dx = y cos2 x dy


\[\frac{dy}{dx} = \frac{x e^x \log x + e^x}{x \cos y}\]

\[y\sqrt{1 + x^2} + x\sqrt{1 + y^2}\frac{dy}{dx} = 0\]

\[\sqrt{1 + x^2} dy + \sqrt{1 + y^2} dx = 0\]

\[\sqrt{1 + x^2 + y^2 + x^2 y^2} + xy\frac{dy}{dx} = 0\]

\[\frac{dy}{dx} = \frac{e^x \left( \sin^2 x + \sin 2x \right)}{y\left( 2 \log y + 1 \right)}\]

\[x\sqrt{1 - y^2} dx + y\sqrt{1 - x^2} dy = 0\]

(y + xy) dx + (x − xy2) dy = 0


(y2 + 1) dx − (x2 + 1) dy = 0


Solve the following differential equation:
\[xy\frac{dy}{dx} = 1 + x + y + xy\]

 


Solve the following differential equation:
\[\left( 1 + y^2 \right) \tan^{- 1} xdx + 2y\left( 1 + x^2 \right)dy = 0\]


\[2x\frac{dy}{dx} = 3y, y\left( 1 \right) = 2\]

\[\frac{dy}{dx} = y \sin 2x, y\left( 0 \right) = 1\]

\[2x\frac{dy}{dx} = 5y, y\left( 1 \right) = 1\]

\[xy\frac{dy}{dx} = \left( x + 2 \right)\left( y + 2 \right), y\left( 1 \right) = - 1\]

Solve the differential equation \[\frac{dy}{dx} = \frac{2x\left( \log x + 1 \right)}{\sin y + y \cos y}\], given that y = 0, when x = 1.


Find the particular solution of edy/dx = x + 1, given that y = 3, when x = 0.


Find the solution of the differential equation cos y dy + cos x sin y dx = 0 given that y = \[\frac{\pi}{2}\], when x = \[\frac{\pi}{2}\] 

 


In a culture the bacteria count is 100000. The number is increased by 10% in 2 hours. In how many hours will the count reach 200000, if the rate of growth of bacteria is proportional to the number present.


If y(x) is a solution of the different equation \[\left( \frac{2 + \sin x}{1 + y} \right)\frac{dy}{dx} = - \cos x\] and y(0) = 1, then find the value of y(π/2).


\[\frac{dy}{dx} = \sec\left( x + y \right)\]

\[\frac{dy}{dx} = \tan\left( x + y \right)\]

(x + y) (dx − dy) = dx + dy


\[\left( x + y + 1 \right)\frac{dy}{dx} = 1\]

(x2 − y2) dx − 2xy dy = 0


\[2xy\frac{dy}{dx} = x^2 + y^2\]

\[xy\frac{dy}{dx} = x^2 - y^2\]

Solve the following differential equations:
\[\frac{dy}{dx} = \frac{y}{x}\left\{ \log y - \log x + 1 \right\}\]


Find the particular solution of the differential equation \[\frac{dy}{dx} = \frac{xy}{x^2 + y^2}\] given that y = 1 when x = 0.

 


Solve the following initial value problem:-
\[\tan x\left( \frac{dy}{dx} \right) = 2x\tan x + x^2 - y; \tan x \neq 0\] given that y = 0 when \[x = \frac{\pi}{2}\]


The rate of growth of a population is proportional to the number present. If the population of a city doubled in the past 25 years, and the present population is 100000, when will the city have a population of 500000?


In a simple circuit of resistance R, self inductance L and voltage E, the current `i` at any time `t` is given by L \[\frac{di}{dt}\]+ R i = E. If E is constant and initially no current passes through the circuit, prove that \[i = \frac{E}{R}\left\{ 1 - e^{- \left( R/L \right)t} \right\}.\]


The decay rate of radium at any time t is proportional to its mass at that time. Find the time when the mass will be halved of its initial mass.


Experiments show that radium disintegrates at a rate proportional to the amount of radium present at the moment. Its half-life is 1590 years. What percentage will disappear in one year?


The slope of the tangent at a point P (x, y) on a curve is \[\frac{- x}{y}\]. If the curve passes through the point (3, −4), find the equation of the curve.


A curve is such that the length of the perpendicular from the origin on the tangent at any point P of the curve is equal to the abscissa of P. Prove that the differential equation of the curve is \[y^2 - 2xy\frac{dy}{dx} - x^2 = 0\], and hence find the curve.


The slope of the tangent at each point of a curve is equal to the sum of the coordinates of the point. Find the curve that passes through the origin.


The slope of a curve at each of its points is equal to the square of the abscissa of the point. Find the particular curve through the point (−1, 1).


Find the equation of the curve that passes through the point (0, a) and is such that at any point (x, y) on it, the product of its slope and the ordinate is equal to the abscissa.


Write the differential equation obtained eliminating the arbitrary constant C in the equation xy = C2.


The integrating factor of the differential equation (x log x)
\[\frac{dy}{dx} + y = 2 \log x\], is given by


The differential equation obtained on eliminating A and B from y = A cos ωt + B sin ωt, is


The equation of the curve whose slope is given by \[\frac{dy}{dx} = \frac{2y}{x}; x > 0, y > 0\] and which passes through the point (1, 1) is


The differential equation \[x\frac{dy}{dx} - y = x^2\], has the general solution


The integrating factor of the differential equation \[x\frac{dy}{dx} - y = 2 x^2\]


If xmyn = (x + y)m+n, prove that \[\frac{dy}{dx} = \frac{y}{x} .\]


Solve the differential equation:

`"x"("dy")/("dx")+"y"=3"x"^2-2`


The price of six different commodities for years 2009 and year 2011 are as follows: 

Commodities A B C D E F

Price in 2009 (₹)

35 80 25 30 80 x
Price in 2011 (₹) 50 y 45 70 120 105

The Index number for the year 2011 taking 2009 as the base year for the above data was calculated to be 125. Find the values of x andy if the total price in 2009 is ₹ 360.


In the following example, verify that the given function is a solution of the corresponding differential equation.

Solution D.E.
xy = log y + k y' (1 - xy) = y2

Determine the order and degree of the following differential equations.

Solution D.E
y = aex + be−x `(d^2y)/dx^2= 1`

Solve the following differential equation.

`(dθ)/dt  = − k (θ − θ_0)`


Solve the following differential equation.

`y^3 - dy/dx = x dy/dx`


For each of the following differential equations find the particular solution.

(x − y2 x) dx − (y + x2 y) dy = 0, when x = 2, y = 0


For the following differential equation find the particular solution.

`(x + 1) dy/dx − 1 = 2e^(−y)`,

when y = 0, x = 1


Choose the correct alternative.

The solution of `x dy/dx = y` log y is


Choose the correct alternative.

Bacteria increases at the rate proportional to the number present. If the original number M doubles in 3 hours, then the number of bacteria will be 4M in


A solution of a differential equation which can be obtained from the general solution by giving particular values to the arbitrary constants is called ___________ solution.


Solve the differential equation:

`e^(dy/dx) = x`


x2y dx – (x3 + y3) dy = 0


 `dy/dx = log x`


Select and write the correct alternative from the given option for the question

The differential equation of y = Ae5x + Be–5x is


Solve the differential equation xdx + 2ydy = 0


Solve the following differential equation `("d"y)/("d"x)` = x2y + y


Solve: `("d"y)/("d"x) + 2/xy` = x2 


For the differential equation, find the particular solution (x – y2x) dx – (y + x2y) dy = 0 when x = 2, y = 0


Solve the following differential equation y2dx + (xy + x2) dy = 0


Choose the correct alternative:

General solution of `y - x ("d"y)/("d"x)` = 0 is


A solution of differential equation which can be obtained from the general solution by giving particular values to the arbitrary constant is called ______ solution


Solve the following differential equation

`y log y ("d"x)/("d"y) + x` = log y


Given that `"dy"/"dx"` = yex and x = 0, y = e. Find the value of y when x = 1.


Solve `x^2 "dy"/"dx" - xy = 1 + cos(y/x)`, x ≠ 0 and x = 1, y = `pi/2`


Integrating factor of the differential equation `"dy"/"dx" - y` = cos x is ex.


Solve the differential equation `"dy"/"dx" + 2xy` = y


lf the straight lines `ax + by + p` = 0 and `x cos alpha + y sin alpha = p` are inclined at an angle π/4 and concurrent with the straight line `x sin alpha - y cos alpha` = 0, then the value of `a^2 + b^2` is


The differential equation (1 + y2)x dx – (1 + x2)y dy = 0 represents a family of:


Solve the differential equation

`y (dy)/(dx) + x` = 0


The value of `dy/dx` if y = |x – 1| + |x – 4| at x = 3 is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×