मराठी

Given that dydxdydx = yex and x = 0, y = e. Find the value of y when x = 1. - Mathematics

Advertisements
Advertisements

प्रश्न

Given that `"dy"/"dx"` = yex and x = 0, y = e. Find the value of y when x = 1.

बेरीज

उत्तर

`"dy"/"dx"` = yex 

⇒ `int "dy"/y = int "e"^x  "d"x`

⇒ logy = ex + c

Substituting x = 0 and y = e

We get loge = e0+ c

i.e., c = 0  ....(∵ loge = 1)

Therefore, log y = ex.

Now, substituting x = 1 in the above

We get log y = e

⇒ y = ex.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 9: Differential Equations - Solved Examples [पृष्ठ १८१]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
पाठ 9 Differential Equations
Solved Examples | Q 3 | पृष्ठ १८१

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

\[\frac{d^2 y}{d x^2} + 4y = 0\]

Differential equation \[x\frac{dy}{dx} = 1, y\left( 1 \right) = 0\]

Function y = log x


Differential equation \[\frac{d^2 y}{d x^2} - y = 0, y \left( 0 \right) = 2, y' \left( 0 \right) = 0\] Function y = ex + ex


\[\frac{dy}{dx} = x^2 + x - \frac{1}{x}, x \neq 0\]

\[\sin^4 x\frac{dy}{dx} = \cos x\]

\[\cos x\frac{dy}{dx} - \cos 2x = \cos 3x\]

\[\frac{dy}{dx} = x \log x\]

\[x\frac{dy}{dx} + 1 = 0 ; y \left( - 1 \right) = 0\]

\[\frac{dy}{dx} = \sin^2 y\]

\[\left( x - 1 \right)\frac{dy}{dx} = 2 x^3 y\]

\[y\sqrt{1 + x^2} + x\sqrt{1 + y^2}\frac{dy}{dx} = 0\]

(1 − x2) dy + xy dx = xy2 dx


tan y \[\frac{dy}{dx}\] = sin (x + y) + sin (x − y) 

 


(y + xy) dx + (x − xy2) dy = 0


\[2\left( y + 3 \right) - xy\frac{dy}{dx} = 0\], y(1) = −2

\[x\frac{dy}{dx} = x + y\]

The surface area of a balloon being inflated, changes at a rate proportional to time t. If initially its radius is 1 unit and after 3 seconds it is 2 units, find the radius after time t.


If the interest is compounded continuously at 6% per annum, how much worth Rs 1000 will be after 10 years? How long will it take to double Rs 1000?


If the marginal cost of manufacturing a certain item is given by C' (x) = \[\frac{dC}{dx}\] = 2 + 0.15 x. Find the total cost function C (x), given that C (0) = 100.

 

A bank pays interest by continuous compounding, that is, by treating the interest rate as the instantaneous rate of change of principal. Suppose in an account interest accrues at 8% per year, compounded continuously. Calculate the percentage increase in such an account over one year.


At every point on a curve the slope is the sum of the abscissa and the product of the ordinate and the abscissa, and the curve passes through (0, 1). Find the equation of the curve.


If a + ib = `("x" + "iy")/("x" - "iy"),` prove that `"a"^2 +"b"^2 = 1` and `"b"/"a" = (2"xy")/("x"^2 - "y"^2)`


Find the coordinates of the centre, foci and equation of directrix of the hyperbola x2 – 3y2 – 4x = 8.


Determine the order and degree of the following differential equations.

Solution D.E.
ax2 + by2 = 5 `xy(d^2y)/dx^2+ x(dy/dx)^2 = y dy/dx`

Solve the following differential equation.

`dy/dx = x^2 y + y`


For  the following differential equation find the particular solution.

`dy/ dx = (4x + y + 1),

when  y = 1, x = 0


For the differential equation, find the particular solution

`("d"y)/("d"x)` = (4x +y + 1), when y = 1, x = 0


The differential equation of all non horizontal lines in a plane is `("d"^2x)/("d"y^2)` = 0


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×