मराठी

At Every Point on a Curve the Slope is the Sum of the Abscissa and the Product of the Ordinate and the Abscissa, and the Curve Passes Through (0, 1). Find the Equation of the Curve. - Mathematics

Advertisements
Advertisements

प्रश्न

At every point on a curve the slope is the sum of the abscissa and the product of the ordinate and the abscissa, and the curve passes through (0, 1). Find the equation of the curve.

उत्तर

According to the question,
\[\frac{dy}{dx} = x + xy\]
\[ \Rightarrow \frac{dy}{dx} = x\left( 1 + y \right)\]
\[\Rightarrow \frac{1}{1 + y}dy = x dx\]
Integrating both sides with respect to x, we get
\[\int\frac{1}{1 + y}dy = \int x dx\]
\[ \Rightarrow \log \left| 1 + y \right| = \frac{x^2}{2} + C\]
\[\text{ Since the curve passes through }\left( 0, 1 \right),\text{ it satisfies the above equation . }\]
\[ \therefore \log \left| 1 + 1 \right| = \frac{0}{2} + C\]
\[ \Rightarrow C = \log 2\]
Putting the value of C, we get
\[\log \left| 1 + y \right| = \frac{x^2}{2} + \log 2\]
\[ \Rightarrow \log \left| \frac{1 + y}{2} \right| = \frac{x^2}{2}\]
\[ \Rightarrow \frac{1 + y}{2} = e^\frac{x^2}{2} \]
\[ \Rightarrow y + 1 = 2 e^\frac{x^2}{2} \]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 22: Differential Equations - Exercise 22.11 [पृष्ठ १३५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 22 Differential Equations
Exercise 22.11 | Q 23 | पृष्ठ १३५

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

\[\left( \frac{dy}{dx} \right)^2 + \frac{1}{dy/dx} = 2\]

\[y\frac{d^2 x}{d y^2} = y^2 + 1\]

Show that the function y = A cos 2x − B sin 2x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + 4y = 0\].


Differential equation \[\frac{dy}{dx} = y, y\left( 0 \right) = 1\]
Function y = ex


Differential equation \[\frac{d^2 y}{d x^2} + y = 0, y \left( 0 \right) = 0, y' \left( 0 \right) = 1\] Function y = sin x


\[\frac{dy}{dx} = \cos^3 x \sin^2 x + x\sqrt{2x + 1}\]

\[\frac{dy}{dx} = \frac{x e^x \log x + e^x}{x \cos y}\]

tan y \[\frac{dy}{dx}\] = sin (x + y) + sin (x − y) 

 


\[x\sqrt{1 - y^2} dx + y\sqrt{1 - x^2} dy = 0\]

y (1 + ex) dy = (y + 1) ex dx


Solve the following differential equation:
\[xy\frac{dy}{dx} = 1 + x + y + xy\]

 


Solve the following differential equation:
\[\left( 1 + y^2 \right) \tan^{- 1} xdx + 2y\left( 1 + x^2 \right)dy = 0\]


\[\cos y\frac{dy}{dx} = e^x , y\left( 0 \right) = \frac{\pi}{2}\]

Solve the differential equation \[x\frac{dy}{dx} + \cot y = 0\] given that \[y = \frac{\pi}{4}\], when \[x=\sqrt{2}\]


\[\frac{dy}{dx} = \left( x + y + 1 \right)^2\]

\[x\frac{dy}{dx} = x + y\]

\[2xy\frac{dy}{dx} = x^2 + y^2\]

3x2 dy = (3xy + y2) dx


Solve the following initial value problem:-
\[x\frac{dy}{dx} - y = \log x, y\left( 1 \right) = 0\]


Solve the following initial value problem:
\[\frac{dy}{dx} + y \cot x = 4x\text{ cosec }x, y\left( \frac{\pi}{2} \right) = 0\]


Solve the following initial value problem:-

\[\frac{dy}{dx} + 2y \tan x = \sin x; y = 0\text{ when }x = \frac{\pi}{3}\]


A bank pays interest by continuous compounding, that is, by treating the interest rate as the instantaneous rate of change of principal. Suppose in an account interest accrues at 8% per year, compounded continuously. Calculate the percentage increase in such an account over one year.


A curve is such that the length of the perpendicular from the origin on the tangent at any point P of the curve is equal to the abscissa of P. Prove that the differential equation of the curve is \[y^2 - 2xy\frac{dy}{dx} - x^2 = 0\], and hence find the curve.


The slope of a curve at each of its points is equal to the square of the abscissa of the point. Find the particular curve through the point (−1, 1).


The differential equation \[x\frac{dy}{dx} - y = x^2\], has the general solution


Integrating factor of the differential equation cos \[x\frac{dy}{dx} + y \sin x = 1\], is


Show that y = ae2x + be−x is a solution of the differential equation \[\frac{d^2 y}{d x^2} - \frac{dy}{dx} - 2y = 0\]


Verify that the function y = e−3x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + \frac{dy}{dx} - 6y = 0.\]


Determine the order and degree of the following differential equations.

Solution D.E.
y = 1 − logx `x^2(d^2y)/dx^2 = 1`

Determine the order and degree of the following differential equations.

Solution D.E
y = aex + be−x `(d^2y)/dx^2= 1`

Determine the order and degree of the following differential equations.

Solution D.E.
ax2 + by2 = 5 `xy(d^2y)/dx^2+ x(dy/dx)^2 = y dy/dx`

Solve the following differential equation.

`y^3 - dy/dx = x dy/dx`


For  the following differential equation find the particular solution.

`dy/ dx = (4x + y + 1),

when  y = 1, x = 0


Solve the following differential equation.

`dy /dx +(x-2 y)/ (2x- y)= 0`


Solve the following differential equation.

`dy/dx + 2xy = x`


Solve the following differential equation y2dx + (xy + x2) dy = 0


Choose the correct alternative:

General solution of `y - x ("d"y)/("d"x)` = 0 is


Solve the differential equation

`y (dy)/(dx) + x` = 0


Solve the differential equation `dy/dx + xy = xy^2` and find the particular solution when y = 4, x = 1.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×