Advertisements
Advertisements
प्रश्न
Solve the following initial value problem:
\[\frac{dy}{dx} + y \cot x = 4x\text{ cosec }x, y\left( \frac{\pi}{2} \right) = 0\]
उत्तर
We have,
\[\frac{dy}{dx} + y \cot x = 4x\text{ cosec }x . . . . . \left( 1 \right)\]
Clearly, it is a linear differential equation of the form
\[\frac{dy}{dx} + Py = Q\]
\[\text{ where }P = \cot x\text{ and }Q = 4x \text{ cosec }x \]
\[ \therefore I . F . = e^{\int P\ dx} \]
\[ = e^{\int\cot x dx} \]
\[ = e^{log\left| \sin x \right|} = \sin x\]
\[\text{ Multiplying both sides of }\left( 1 \right)\text{ by }I . F . = \sin x,\text{ we get }\]
\[\sin x\left( \frac{dy}{dx} + y \cot x \right) = \sin x\left( 4x\text{ cosec }x \right)\]
\[ \Rightarrow \sin x\left( \frac{dy}{dx} + y \cot x \right) = 4x\]
Integrating both sides with respect to x, we get
\[y \sin x = 4\int x dx + C\]
\[ \Rightarrow y \sin x = 2 x^2 + C . . . . . \left( 2 \right)\]
Now,
\[y\left( \frac{\pi}{2} \right) = 0\]
\[ \therefore 0 \times \sin\left( \frac{\pi}{2} \right) = 2 \left( \frac{\pi}{2} \right)^2 + C\]
\[ \Rightarrow C = - \frac{\pi^2}{2}\]
\[\text{ Putting the value of C in }\left( 2 \right),\text{ we get }\]
\[y \sin x = 2 x^2 - \frac{\pi^2}{2}\]
\[\text{ Hence, }y \sin x = 2 x^2 - \frac{\pi^2}{2}\text{ is the required solution .}\]
APPEARS IN
संबंधित प्रश्न
Solve the equation for x: `sin^(-1) 5/x + sin^(-1) 12/x = pi/2, x != 0`
Show that y = AeBx is a solution of the differential equation
Verify that \[y = e^{m \cos^{- 1} x}\] satisfies the differential equation \[\left( 1 - x^2 \right)\frac{d^2 y}{d x^2} - x\frac{dy}{dx} - m^2 y = 0\]
For the following differential equation verify that the accompanying function is a solution:
Differential equation | Function |
\[x\frac{dy}{dx} = y\]
|
y = ax |
xy (y + 1) dy = (x2 + 1) dx
Solve the following differential equation:
(xy2 + 2x) dx + (x2 y + 2y) dy = 0
Find the solution of the differential equation cos y dy + cos x sin y dx = 0 given that y = \[\frac{\pi}{2}\], when x = \[\frac{\pi}{2}\]
(x + y) (dx − dy) = dx + dy
x2 dy + y (x + y) dx = 0
(x2 − y2) dx − 2xy dy = 0
Solve the following initial value problem:-
\[x\frac{dy}{dx} - y = \left( x + 1 \right) e^{- x} , y\left( 1 \right) = 0\]
Solve the following initial value problem:-
\[\frac{dy}{dx} + y \tan x = 2x + x^2 \tan x, y\left( 0 \right) = 1\]
The slope of the tangent at a point P (x, y) on a curve is \[\frac{- x}{y}\]. If the curve passes through the point (3, −4), find the equation of the curve.
Radium decomposes at a rate proportional to the quantity of radium present. It is found that in 25 years, approximately 1.1% of a certain quantity of radium has decomposed. Determine approximately how long it will take for one-half of the original amount of radium to decompose?
Find the equation of the curve that passes through the point (0, a) and is such that at any point (x, y) on it, the product of its slope and the ordinate is equal to the abscissa.
The solution of the differential equation \[\frac{dy}{dx} - \frac{y\left( x + 1 \right)}{x} = 0\] is given by
The differential equation
\[\frac{dy}{dx} + Py = Q y^n , n > 2\] can be reduced to linear form by substituting
Solve the following differential equation : \[y^2 dx + \left( x^2 - xy + y^2 \right)dy = 0\] .
Find the coordinates of the centre, foci and equation of directrix of the hyperbola x2 – 3y2 – 4x = 8.
Find the particular solution of the differential equation `"dy"/"dx" = "xy"/("x"^2+"y"^2),`given that y = 1 when x = 0
Determine the order and degree of the following differential equations.
Solution | D.E |
y = aex + be−x | `(d^2y)/dx^2= 1` |
For each of the following differential equations find the particular solution.
(x − y2 x) dx − (y + x2 y) dy = 0, when x = 2, y = 0
Solve the following differential equation.
`xy dy/dx = x^2 + 2y^2`
Solve the following differential equation.
`dy/dx + y` = 3
The function y = cx is the solution of differential equation `("d"y)/("d"x) = y/x`
Solve: ydx – xdy = x2ydx.
If `y = log_2 log_2(x)` then `(dy)/(dx)` =