Advertisements
Advertisements
प्रश्न
उत्तर
We have,
\[\frac{dy}{dx} = x^5 \tan^{- 1} \left( x^3 \right)\]
\[ \Rightarrow dy = \left\{ x^5 \tan^{- 1} \left( x^3 \right) \right\}dx\]
Integrating both sides, we get
\[\int dy = \int x^5 \tan^{- 1} \left( x^3 \right)dx\]
\[ \Rightarrow y = \int x^5 \tan^{- 1} \left( x^3 \right)dx\]
\[\text{Putting }t = x^3 ,\text{ we get }\]
\[dt = 3 x^2 dx\]
\[ \therefore y = \frac{1}{3}\int t \tan^{- 1} t dt\]
\[ = \frac{1}{3}\left[ \tan^{- 1} t\int t dt - \int\left\{ \frac{d}{dt}\left( \tan^{- 1} t \right)\int t dx \right\}dt \right]\]
\[ = \frac{1}{3} \times \frac{t^2 \tan^{- 1} t}{2} - \frac{1}{6}\int\frac{t^2}{\left( 1 + t^2 \right)}dt\]
\[ = \frac{t^2 \tan^{- 1} t}{6} - \frac{1}{6}\int\frac{t^2 + 1 - 1}{\left( 1 + t^2 \right)}dt\]
\[ = \frac{t^2 \tan^{- 1} t}{6} - \frac{1}{6}\int dt + \frac{1}{6}\int\frac{1}{1 + t^2}dt\]
\[ = \frac{t^2 \tan^{- 1} t}{6} - \frac{1}{6}t + \frac{\tan^{- 1} t}{6} + C\]
\[ = \frac{x^6 \tan^{- 1} x^3}{6} - \frac{1}{6} x^3 + \frac{\tan^{- 1} x^3}{6} + C\]
\[ = \frac{1}{6}\left( x^6 \tan^{- 1} x^3 - x^3 + \tan^{- 1} x^3 \right) + C\]
\[\text{Hence, }y = \frac{1}{6}\left( x^6 \tan^{- 1} x^3 - x^3 + \tan^{- 1} x^3 \right) +\text{C is the solution to the given differential equation.}\]
APPEARS IN
संबंधित प्रश्न
Solve the equation for x: `sin^(-1) 5/x + sin^(-1) 12/x = pi/2, x != 0`
For the following differential equation verify that the accompanying function is a solution:
Differential equation | Function |
\[x\frac{dy}{dx} + y = y^2\]
|
\[y = \frac{a}{x + a}\]
|
For the following differential equation verify that the accompanying function is a solution:
Differential equation | Function |
\[x^3 \frac{d^2 y}{d x^2} = 1\]
|
\[y = ax + b + \frac{1}{2x}\]
|
dy + (x + 1) (y + 1) dx = 0
x2 dy + y (x + y) dx = 0
Solve the following initial value problem:-
\[y' + y = e^x , y\left( 0 \right) = \frac{1}{2}\]
If the interest is compounded continuously at 6% per annum, how much worth Rs 1000 will be after 10 years? How long will it take to double Rs 1000?
The rate of increase in the number of bacteria in a certain bacteria culture is proportional to the number present. Given the number triples in 5 hrs, find how many bacteria will be present after 10 hours. Also find the time necessary for the number of bacteria to be 10 times the number of initial present.
In a simple circuit of resistance R, self inductance L and voltage E, the current `i` at any time `t` is given by L \[\frac{di}{dt}\]+ R i = E. If E is constant and initially no current passes through the circuit, prove that \[i = \frac{E}{R}\left\{ 1 - e^{- \left( R/L \right)t} \right\}.\]
The decay rate of radium at any time t is proportional to its mass at that time. Find the time when the mass will be halved of its initial mass.
The slope of the tangent at a point P (x, y) on a curve is \[\frac{- x}{y}\]. If the curve passes through the point (3, −4), find the equation of the curve.
Find the equation of the curve such that the portion of the x-axis cut off between the origin and the tangent at a point is twice the abscissa and which passes through the point (1, 2).
Integrating factor of the differential equation cos \[x\frac{dy}{dx} + y\] sin x = 1, is
y2 dx + (x2 − xy + y2) dy = 0
Verify that the function y = e−3x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + \frac{dy}{dx} - 6y = 0.\]
In the following verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation:-
y = ex + 1 y'' − y' = 0
Form the differential equation representing the family of curves y = a sin (x + b), where a, b are arbitrary constant.
Form the differential equation of the family of parabolas having vertex at origin and axis along positive y-axis.
In the following example, verify that the given function is a solution of the corresponding differential equation.
Solution | D.E. |
xy = log y + k | y' (1 - xy) = y2 |
Determine the order and degree of the following differential equations.
Solution | D.E. |
y = 1 − logx | `x^2(d^2y)/dx^2 = 1` |
For each of the following differential equations find the particular solution.
`y (1 + logx)dx/dy - x log x = 0`,
when x=e, y = e2.
For the following differential equation find the particular solution.
`dy/ dx = (4x + y + 1),
when y = 1, x = 0
Solve the following differential equation.
y2 dx + (xy + x2 ) dy = 0
Solve the following differential equation.
`dy /dx +(x-2 y)/ (2x- y)= 0`
A solution of a differential equation which can be obtained from the general solution by giving particular values to the arbitrary constants is called ___________ solution.
Given that `"dy"/"dx"` = yex and x = 0, y = e. Find the value of y when x = 1.
Solve the differential equation `"dy"/"dx"` = 1 + x + y2 + xy2, when y = 0, x = 0.
lf the straight lines `ax + by + p` = 0 and `x cos alpha + y sin alpha = p` are inclined at an angle π/4 and concurrent with the straight line `x sin alpha - y cos alpha` = 0, then the value of `a^2 + b^2` is
There are n students in a school. If r % among the students are 12 years or younger, which of the following expressions represents the number of students who are older than 12?
Solve the differential equation `dy/dx + xy = xy^2` and find the particular solution when y = 4, x = 1.