मराठी

Form the Differential Equation of the Family of Parabolas Having Vertex at Origin and Axis Along Positive Y-axis. - Mathematics

Advertisements
Advertisements

प्रश्न

Form the differential equation of the family of parabolas having vertex at origin and axis along positive y-axis.

बेरीज

उत्तर

The equation of the parabola having vertex at origin and axis along the positive direction of y-axis is given by

x2 =4ay         .....(1)

Since there is only one parameter, so we differentiate it only once.

Differentiating with respect to x, we get

\[2x = 4ay'\]

\[ \Rightarrow 4a = \frac{2x}{y'}\]

Substituting the value of 4a in (1), we get

\[x^2 = \frac{2x}{y'} \times y\]

\[ \Rightarrow xy' = 2y\]

\[ \Rightarrow xy' - 2y = 0\]

 

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 22: Differential Equations - Revision Exercise [पृष्ठ १४५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 22 Differential Equations
Revision Exercise | Q 8 | पृष्ठ १४५

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

\[\sqrt{1 + \left( \frac{dy}{dx} \right)^2} = \left( c\frac{d^2 y}{d x^2} \right)^{1/3}\]

Find the differential equation of all the parabolas with latus rectum '4a' and whose axes are parallel to x-axis.


Show that the differential equation of which y = 2(x2 − 1) + \[c e^{- x^2}\] is a solution, is \[\frac{dy}{dx} + 2xy = 4 x^3\]


Differential equation \[\frac{d^2 y}{d x^2} + y = 0, y \left( 0 \right) = 0, y' \left( 0 \right) = 1\] Function y = sin x


\[\frac{dy}{dx} = \log x\]

\[x\left( x^2 - 1 \right)\frac{dy}{dx} = 1, y\left( 2 \right) = 0\]

\[5\frac{dy}{dx} = e^x y^4\]

xy dy = (y − 1) (x + 1) dx


\[\sqrt{1 + x^2} dy + \sqrt{1 + y^2} dx = 0\]

\[\frac{dy}{dx} = \frac{x\left( 2 \log x + 1 \right)}{\sin y + y \cos y}\]

\[\frac{dy}{dx} + \frac{\cos x \sin y}{\cos y} = 0\]

dy + (x + 1) (y + 1) dx = 0


\[\frac{dy}{dx} = \left( \cos^2 x - \sin^2 x \right) \cos^2 y\]

Solve the following differential equation:
\[y\left( 1 - x^2 \right)\frac{dy}{dx} = x\left( 1 + y^2 \right)\]

 


\[\frac{dy}{dx} = 2 e^{2x} y^2 , y\left( 0 \right) = - 1\]

\[\frac{dy}{dx} = 1 + x^2 + y^2 + x^2 y^2 , y\left( 0 \right) = 1\]

Find the particular solution of the differential equation \[\frac{dy}{dx} = - 4x y^2\]  given that y = 1, when x = 0.


Find the particular solution of the differential equation
(1 – y2) (1 + log x) dx + 2xy dy = 0, given that y = 0 when x = 1.


\[\frac{dy}{dx} = \frac{x}{2y + x}\]

Solve the following differential equations:
\[\frac{dy}{dx} = \frac{y}{x}\left\{ \log y - \log x + 1 \right\}\]


\[x\frac{dy}{dx} = y - x \cos^2 \left( \frac{y}{x} \right)\]

Find the particular solution of the differential equation \[\frac{dy}{dx} = \frac{xy}{x^2 + y^2}\] given that y = 1 when x = 0.

 


Solve the following initial value problem:-

\[x\frac{dy}{dx} - y = \left( x + 1 \right) e^{- x} , y\left( 1 \right) = 0\]


Solve the following initial value problem:-

\[\frac{dy}{dx} + 2y \tan x = \sin x; y = 0\text{ when }x = \frac{\pi}{3}\]


Solve the following initial value problem:-
\[\tan x\left( \frac{dy}{dx} \right) = 2x\tan x + x^2 - y; \tan x \neq 0\] given that y = 0 when \[x = \frac{\pi}{2}\]


If the interest is compounded continuously at 6% per annum, how much worth Rs 1000 will be after 10 years? How long will it take to double Rs 1000?


A bank pays interest by continuous compounding, that is, by treating the interest rate as the instantaneous rate of change of principal. Suppose in an account interest accrues at 8% per year, compounded continuously. Calculate the percentage increase in such an account over one year.


Find the equation of the curve such that the portion of the x-axis cut off between the origin and the tangent at a point is twice the abscissa and which passes through the point (1, 2).


Show that all curves for which the slope at any point (x, y) on it is \[\frac{x^2 + y^2}{2xy}\]  are rectangular hyperbola.


Integrating factor of the differential equation cos \[x\frac{dy}{dx} + y\] sin x = 1, is


Find the particular solution of the differential equation `"dy"/"dx" = "xy"/("x"^2+"y"^2),`given that y = 1 when x = 0


In each of the following examples, verify that the given function is a solution of the corresponding differential equation.

Solution D.E.
y = ex  `dy/ dx= y`

For  the following differential equation find the particular solution.

`dy/ dx = (4x + y + 1),

when  y = 1, x = 0


Solve the following differential equation

`yx ("d"y)/("d"x)` = x2 + 2y2 


Solve the following differential equation `("d"y)/("d"x)` = x2y + y


Verify y = log x + c is the solution of differential equation `x ("d"^2y)/("d"x^2) + ("d"y)/("d"x)` = 0


Find the particular solution of the following differential equation

`("d"y)/("d"x)` = e2y cos x, when x = `pi/6`, y = 0.

Solution: The given D.E. is `("d"y)/("d"x)` = e2y cos x

∴ `1/"e"^(2y)  "d"y` = cos x dx

Integrating, we get

`int square  "d"y` = cos x dx

∴ `("e"^(-2y))/(-2)` = sin x + c1

∴ e–2y = – 2sin x – 2c1

∴ `square` = c, where c = – 2c

This is general solution.

When x = `pi/6`, y = 0, we have

`"e"^0 + 2sin  pi/6` = c

∴ c = `square`

∴ particular solution is `square`


Solve the differential equation `dy/dx + xy = xy^2` and find the particular solution when y = 4, x = 1.


The value of `dy/dx` if y = |x – 1| + |x – 4| at x = 3 is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×