Advertisements
Advertisements
प्रश्न
Integrating factor of the differential equation cos \[x\frac{dy}{dx} + y\] sin x = 1, is
पर्याय
sin x
sec x
tan x
cos x
उत्तर
sec x
We have,
\[\cos x\frac{dy}{dx} + y \sin x = 1\]
Dividing both sides by cos x, we get
\[\frac{dy}{dx} + \frac{\sin x}{\cos x}y = \frac{1}{\cos x}\]
\[ \Rightarrow \frac{dy}{dx} + \left( \tan x \right)y = \frac{1}{\cos x}\]
\[\text{Comparing with }\frac{dy}{dx} + Py = Q,\text{ we get }\]
\[P = \tan x\]
\[Q = \frac{1}{\cos x}\]
Now,
\[ I . F . = e^{\int\tan xdx} = e^{log\left( \sec x \right)} \]
\[ = \sec x\]
APPEARS IN
संबंधित प्रश्न
Verify that y = 4 sin 3x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + 9y = 0\]
Show that the function y = A cos x + B sin x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + y = 0\]
For the following differential equation verify that the accompanying function is a solution:
Differential equation | Function |
\[y = \left( \frac{dy}{dx} \right)^2\]
|
\[y = \frac{1}{4} \left( x \pm a \right)^2\]
|
(sin x + cos x) dy + (cos x − sin x) dx = 0
C' (x) = 2 + 0.15 x ; C(0) = 100
tan y \[\frac{dy}{dx}\] = sin (x + y) + sin (x − y)
Solve the following differential equation:
\[y\left( 1 - x^2 \right)\frac{dy}{dx} = x\left( 1 + y^2 \right)\]
(y2 − 2xy) dx = (x2 − 2xy) dy
(x + 2y) dx − (2x − y) dy = 0
Find the particular solution of the differential equation \[\frac{dy}{dx} = \frac{xy}{x^2 + y^2}\] given that y = 1 when x = 0.
Solve the following initial value problem:-
\[x\frac{dy}{dx} - y = \log x, y\left( 1 \right) = 0\]
Solve the following initial value problem:-
\[\frac{dy}{dx} + y \tan x = 2x + x^2 \tan x, y\left( 0 \right) = 1\]
Solve the following initial value problem:-
\[\frac{dy}{dx} + 2y \tan x = \sin x; y = 0\text{ when }x = \frac{\pi}{3}\]
Find the equation of the curve such that the portion of the x-axis cut off between the origin and the tangent at a point is twice the abscissa and which passes through the point (1, 2).
Write the differential equation obtained by eliminating the arbitrary constant C in the equation x2 − y2 = C2.
Write the differential equation obtained eliminating the arbitrary constant C in the equation xy = C2.
Solve the following differential equation : \[y^2 dx + \left( x^2 - xy + y^2 \right)dy = 0\] .
If a + ib = `("x" + "iy")/("x" - "iy"),` prove that `"a"^2 +"b"^2 = 1` and `"b"/"a" = (2"xy")/("x"^2 - "y"^2)`
Find the equation of the plane passing through the point (1, -2, 1) and perpendicular to the line joining the points A(3, 2, 1) and B(1, 4, 2).
Form the differential equation from the relation x2 + 4y2 = 4b2
Solve the following differential equation.
`dy/dx = x^2 y + y`
Solve the following differential equation.
xdx + 2y dx = 0
Solve the following differential equation.
`xy dy/dx = x^2 + 2y^2`
`dy/dx = log x`
Solve the differential equation (x2 – yx2)dy + (y2 + xy2)dx = 0
Solve: `("d"y)/("d"x) + 2/xy` = x2
The solution of differential equation `x^2 ("d"^2y)/("d"x^2)` = 1 is ______
Find the particular solution of the following differential equation
`("d"y)/("d"x)` = e2y cos x, when x = `pi/6`, y = 0.
Solution: The given D.E. is `("d"y)/("d"x)` = e2y cos x
∴ `1/"e"^(2y) "d"y` = cos x dx
Integrating, we get
`int square "d"y` = cos x dx
∴ `("e"^(-2y))/(-2)` = sin x + c1
∴ e–2y = – 2sin x – 2c1
∴ `square` = c, where c = – 2c1
This is general solution.
When x = `pi/6`, y = 0, we have
`"e"^0 + 2sin pi/6` = c
∴ c = `square`
∴ particular solution is `square`
Integrating factor of the differential equation `x "dy"/"dx" - y` = sinx is ______.
Solve the differential equation `"dy"/"dx"` = 1 + x + y2 + xy2, when y = 0, x = 0.
Solve the differential equation
`y (dy)/(dx) + x` = 0