Advertisements
Advertisements
प्रश्न
उत्तर
We have,
\[\frac{dy}{dx} = \frac{1 - \cos 2y}{1 + \cos 2y}\]
\[ \Rightarrow \frac{dx}{dy} = \frac{1 + \cos 2y}{1 - \cos 2y}\]
\[ \Rightarrow dx = \frac{1 + \cos 2y}{1 - \cos 2y}dy\]
\[ \Rightarrow dx = \frac{2 \cos^2 y}{2 \sin^2 y}dy\]
\[ \Rightarrow dx = \cot^2 y\ dy\]
Integrating both sides, we get
\[ \Rightarrow \int dx = \int \cot^2 y\ dy\]
\[ \Rightarrow x = \int\left( {cosec}^2 y - 1 \right) dy\]
\[ \Rightarrow x = \int {cosec}^2 y dy - \int dy\]
\[ \Rightarrow x = - \cot y - y + C\]
\[ \Rightarrow x + \cot y + y = C\]
\[\text{Hence, }x + \cot y + y =\text{C is the required solution.}\]
APPEARS IN
संबंधित प्रश्न
Assume that a rain drop evaporates at a rate proportional to its surface area. Form a differential equation involving the rate of change of the radius of the rain drop.
Find the differential equation of all the parabolas with latus rectum '4a' and whose axes are parallel to x-axis.
Show that y = ax3 + bx2 + c is a solution of the differential equation \[\frac{d^3 y}{d x^3} = 6a\].
For the following differential equation verify that the accompanying function is a solution:
Differential equation | Function |
\[x^3 \frac{d^2 y}{d x^2} = 1\]
|
\[y = ax + b + \frac{1}{2x}\]
|
xy (y + 1) dy = (x2 + 1) dx
Find the particular solution of the differential equation \[\frac{dy}{dx} = - 4x y^2\] given that y = 1, when x = 0.
x2 dy + y (x + y) dx = 0
(x2 − y2) dx − 2xy dy = 0
y ex/y dx = (xex/y + y) dy
Solve the following initial value problem:-
\[dy = \cos x\left( 2 - y\text{ cosec }x \right)dx\]
If the marginal cost of manufacturing a certain item is given by C' (x) = \[\frac{dC}{dx}\] = 2 + 0.15 x. Find the total cost function C (x), given that C (0) = 100.
Show that the equation of the curve whose slope at any point is equal to y + 2x and which passes through the origin is y + 2 (x + 1) = 2e2x.
Find the equation of the curve which passes through the point (3, −4) and has the slope \[\frac{2y}{x}\] at any point (x, y) on it.
Write the differential equation obtained by eliminating the arbitrary constant C in the equation x2 − y2 = C2.
Which of the following is the integrating factor of (x log x) \[\frac{dy}{dx} + y\] = 2 log x?
Integrating factor of the differential equation cos \[x\frac{dy}{dx} + y \sin x = 1\], is
In the following verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation:-
`y=sqrt(a^2-x^2)` `x+y(dy/dx)=0`
In the following example, verify that the given function is a solution of the corresponding differential equation.
Solution | D.E. |
y = xn | `x^2(d^2y)/dx^2 - n xx (xdy)/dx + ny =0` |
Find the differential equation whose general solution is
x3 + y3 = 35ax.
For the following differential equation find the particular solution.
`dy/ dx = (4x + y + 1),
when y = 1, x = 0
Solve the following differential equation.
(x2 − y2 ) dx + 2xy dy = 0
Solve the following differential equation.
dr + (2r)dθ= 8dθ
Solve the differential equation sec2y tan x dy + sec2x tan y dx = 0
Solve the following differential equation `("d"y)/("d"x)` = x2y + y
For the differential equation, find the particular solution
`("d"y)/("d"x)` = (4x +y + 1), when y = 1, x = 0
The function y = ex is solution ______ of differential equation
Solve the following differential equation
`y log y ("d"x)/("d"y) + x` = log y
Given that `"dy"/"dx" = "e"^-2x` and y = 0 when x = 5. Find the value of x when y = 3.