Advertisements
Advertisements
प्रश्न
उत्तर
\[\frac{dy}{dx} = 2 e^{2x} y^2 , y\left( 0 \right) = - 1\]
\[ \Rightarrow \frac{1}{y^2}dy = 2 e^{2x} dx\]
Integrating both sides, we get
\[\int\frac{1}{y^2}dy = 2\int e^{2x} dx\]
\[ \Rightarrow \frac{- 1}{y} = e^{2x} + C . . . . . (1)\]
We know that at x = 0, y = - 1 .
Substituting the values of x and y in (1), we get
\[1 = 1 + C\]
\[ \Rightarrow C = 0\]
Substituting the value of C in (1), we get
\[- \frac{1}{y} = e^{2x} \]
\[ \Rightarrow y = - e^{- 2x} \]
\[\text{ Hence, }y = - e^{- 2x}\text{ is the required solution }.\]
APPEARS IN
संबंधित प्रश्न
Solve the equation for x: `sin^(-1) 5/x + sin^(-1) 12/x = pi/2, x != 0`
Hence, the given function is the solution to the given differential equation. \[\frac{c - x}{1 + cx}\] is a solution of the differential equation \[(1+x^2)\frac{dy}{dx}+(1+y^2)=0\].
Differential equation \[\frac{d^2 y}{d x^2} - 3\frac{dy}{dx} + 2y = 0, y \left( 0 \right) = 1, y' \left( 0 \right) = 3\] Function y = ex + e2x
xy (y + 1) dy = (x2 + 1) dx
tan y \[\frac{dy}{dx}\] = sin (x + y) + sin (x − y)
Solve the following initial value problem:-
\[y' + y = e^x , y\left( 0 \right) = \frac{1}{2}\]
The surface area of a balloon being inflated, changes at a rate proportional to time t. If initially its radius is 1 unit and after 3 seconds it is 2 units, find the radius after time t.
A population grows at the rate of 5% per year. How long does it take for the population to double?
If the interest is compounded continuously at 6% per annum, how much worth Rs 1000 will be after 10 years? How long will it take to double Rs 1000?
Find the equation of the curve which passes through the point (2, 2) and satisfies the differential equation
\[y - x\frac{dy}{dx} = y^2 + \frac{dy}{dx}\]
Show that the equation of the curve whose slope at any point is equal to y + 2x and which passes through the origin is y + 2 (x + 1) = 2e2x.
At every point on a curve the slope is the sum of the abscissa and the product of the ordinate and the abscissa, and the curve passes through (0, 1). Find the equation of the curve.
The rate of increase of bacteria in a culture is proportional to the number of bacteria present and it is found that the number doubles in 6 hours. Prove that the bacteria becomes 8 times at the end of 18 hours.
Find the equation of the curve passing through the point (0, 1) if the slope of the tangent to the curve at each of its point is equal to the sum of the abscissa and the product of the abscissa and the ordinate of the point.
The solution of the differential equation y1 y3 = y22 is
The differential equation of the ellipse \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = C\] is
The differential equation \[x\frac{dy}{dx} - y = x^2\], has the general solution
Which of the following differential equations has y = C1 ex + C2 e−x as the general solution?
Form the differential equation representing the family of curves y = a sin (x + b), where a, b are arbitrary constant.
Solve the following differential equation.
`dy/dx = x^2 y + y`
Solve the following differential equation.
`(x + y) dy/dx = 1`
Solve the following differential equation.
`(x + a) dy/dx = – y + a`
Solve
`dy/dx + 2/ x y = x^2`
Select and write the correct alternative from the given option for the question
Bacterial increases at the rate proportional to the number present. If original number M doubles in 3 hours, then number of bacteria will be 4M in
Solve the differential equation sec2y tan x dy + sec2x tan y dx = 0
For the differential equation, find the particular solution
`("d"y)/("d"x)` = (4x +y + 1), when y = 1, x = 0
Choose the correct alternative:
Solution of the equation `x("d"y)/("d"x)` = y log y is
Choose the correct alternative:
General solution of `y - x ("d"y)/("d"x)` = 0 is
lf the straight lines `ax + by + p` = 0 and `x cos alpha + y sin alpha = p` are inclined at an angle π/4 and concurrent with the straight line `x sin alpha - y cos alpha` = 0, then the value of `a^2 + b^2` is