मराठी

The Differential Equation of the Ellipse X 2 a 2 + Y 2 B 2 = C is - Mathematics

Advertisements
Advertisements

प्रश्न

The differential equation of the ellipse \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = C\] is

पर्याय

  • \[\frac{y "}{y'} + \frac{y'}{y} - \frac{1}{x} = 0\]

  • \[\frac{y "}{y'} + \frac{y'}{y} + \frac{1}{x} = 0\]

  • \[\frac{y "}{y'} - \frac{y'}{y} - \frac{1}{x} = 0\]

  • none of these

MCQ

उत्तर

\[\frac{y "}{y'} + \frac{y'}{y} - \frac{1}{x} = 0\]

 

We have,
\[\frac{x^2}{a^2} + \frac{y^2}{b^2} = C . . . . . \left( 1 \right)\]
Differentiating with respect to x, we get
\[\frac{2x}{a^2} + \frac{2y}{b^2}y' = 0\]
\[ \Rightarrow \frac{x}{a^2} + \frac{y}{b^2}y' = 0 . . . . . \left( 2 \right)\]
Again differentiating with respect to x, we get
\[ \Rightarrow \frac{1}{a^2} + \frac{1}{b^2} \left( y' \right)^2 + \frac{y}{b^2}y'' = 0 . . . . . \left( 3 \right)\]
Multiplying throughout by x, we get
\[\frac{x}{a^2} + \frac{x}{b^2} \left( y' \right)^2 + \frac{xy}{b^2}y'' = 0 . . . . . \left( 4 \right)\]
\[\text{ Subtracting }\left( 2 \right)\text{ from }\left( 4 \right),\text{ we get }\]
\[\frac{1}{b^2}\left[ x \left( y' \right)^2 + xyy'' - yy' \right] = 0 \]
\[ \Rightarrow x \left( y' \right)^2 + xyy'' - yy' = 0\]
Dividing both sides by xyy', we get
\[\frac{y'}{y} + \frac{y''}{y'} - \frac{1}{x} = 0\]
\[\Rightarrow \frac{y''}{y'} + \frac{y'}{y} - \frac{1}{x} = 0\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 22: Differential Equations - MCQ [पृष्ठ १४१]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 22 Differential Equations
MCQ | Q 17 | पृष्ठ १४१

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Find the differential equation of all the parabolas with latus rectum '4a' and whose axes are parallel to x-axis.


Show that y = ex (A cos x + B sin x) is the solution of the differential equation \[\frac{d^2 y}{d x^2} - 2\frac{dy}{dx} + 2y = 0\]


Differential equation \[\frac{d^2 y}{d x^2} - \frac{dy}{dx} = 0, y \left( 0 \right) = 2, y'\left( 0 \right) = 1\]

Function y = ex + 1


Differential equation \[\frac{d^2 y}{d x^2} - 2\frac{dy}{dx} + y = 0, y \left( 0 \right) = 1, y' \left( 0 \right) = 2\] Function y = xex + ex


\[\frac{dy}{dx} = x^2 + x - \frac{1}{x}, x \neq 0\]

\[\frac{dy}{dx} = x^5 + x^2 - \frac{2}{x}, x \neq 0\]

\[\frac{dy}{dx} + 2x = e^{3x}\]

\[\sqrt{a + x} dy + x\ dx = 0\]

\[\frac{dy}{dx} = \frac{1 - \cos 2y}{1 + \cos 2y}\]

(1 + x2) dy = xy dx


xy (y + 1) dy = (x2 + 1) dx


(1 + x) (1 + y2) dx + (1 + y) (1 + x2) dy = 0


\[\frac{dy}{dx} = \left( \cos^2 x - \sin^2 x \right) \cos^2 y\]

Find the particular solution of the differential equation \[\frac{dy}{dx} = - 4x y^2\]  given that y = 1, when x = 0.


\[\frac{dy}{dx} = \sec\left( x + y \right)\]

\[x\frac{dy}{dx} = y - x \cos^2 \left( \frac{y}{x} \right)\]

Solve the following initial value problem:-

\[\frac{dy}{dx} + y \tan x = 2x + x^2 \tan x, y\left( 0 \right) = 1\]


If the marginal cost of manufacturing a certain item is given by C' (x) = \[\frac{dC}{dx}\] = 2 + 0.15 x. Find the total cost function C (x), given that C (0) = 100.

 

Find the equation of the curve passing through the point \[\left( 1, \frac{\pi}{4} \right)\]  and tangent at any point of which makes an angle tan−1  \[\left( \frac{y}{x} - \cos^2 \frac{y}{x} \right)\] with x-axis.


At every point on a curve the slope is the sum of the abscissa and the product of the ordinate and the abscissa, and the curve passes through (0, 1). Find the equation of the curve.


The equation of the curve whose slope is given by \[\frac{dy}{dx} = \frac{2y}{x}; x > 0, y > 0\] and which passes through the point (1, 1) is


Solve the following differential equation : \[y^2 dx + \left( x^2 - xy + y^2 \right)dy = 0\] .


Form the differential equation representing the family of parabolas having vertex at origin and axis along positive direction of x-axis.


Solve the differential equation:

`"x"("dy")/("dx")+"y"=3"x"^2-2`


In each of the following examples, verify that the given function is a solution of the corresponding differential equation.

Solution D.E.
y = ex  `dy/ dx= y`

Solve the following differential equation.

`y^3 - dy/dx = x dy/dx`


For the following differential equation find the particular solution.

`(x + 1) dy/dx − 1 = 2e^(−y)`,

when y = 0, x = 1


Solve the following differential equation.

xdx + 2y dx = 0


Solve the following differential equation.

y2 dx + (xy + x2 ) dy = 0


Solve the following differential equation.

y dx + (x - y2 ) dy = 0


State whether the following is True or False:

The degree of a differential equation is the power of the highest ordered derivative when all the derivatives are made free from negative and/or fractional indices if any.


Solve the differential equation:

dr = a r dθ − θ dr


Solve `("d"y)/("d"x) = (x + y + 1)/(x + y - 1)` when x = `2/3`, y = `1/3`


For the differential equation, find the particular solution (x – y2x) dx – (y + x2y) dy = 0 when x = 2, y = 0


Solve the following differential equation

`x^2  ("d"y)/("d"x)` = x2 + xy − y2 


Solve the following differential equation 

sec2 x tan y dx + sec2 y tan x dy = 0

Solution: sec2 x tan y dx + sec2 y tan x dy = 0

∴ `(sec^2x)/tanx  "d"x + square` = 0

Integrating, we get

`square + int (sec^2y)/tany  "d"y` = log c

Each of these integral is of the type

`int ("f'"(x))/("f"(x))  "d"x` = log |f(x)| + log c

∴ the general solution is

`square + log |tan y|` = log c

∴ log |tan x . tan y| = log c

`square`

This is the general solution.


The integrating factor of the differential equation `"dy"/"dx" (x log x) + y` = 2logx is ______.


Integrating factor of the differential equation `"dy"/"dx" - y` = cos x is ex.


lf the straight lines `ax + by + p` = 0 and `x cos alpha + y sin alpha = p` are inclined at an angle π/4 and concurrent with the straight line `x sin alpha - y cos alpha` = 0, then the value of `a^2 + b^2` is


A man is moving away from a tower 41.6 m high at a rate of 2 m/s. If the eye level of the man is 1.6 m above the ground, then the rate at which the angle of elevation of the top of the tower changes, when he is at a distance of 30 m from the foot of the tower, is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×