Advertisements
Advertisements
प्रश्न
The differential equation of the ellipse \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = C\] is
विकल्प
\[\frac{y "}{y'} + \frac{y'}{y} - \frac{1}{x} = 0\]
\[\frac{y "}{y'} + \frac{y'}{y} + \frac{1}{x} = 0\]
\[\frac{y "}{y'} - \frac{y'}{y} - \frac{1}{x} = 0\]
none of these
उत्तर
\[\frac{y "}{y'} + \frac{y'}{y} - \frac{1}{x} = 0\]
We have,
\[\frac{x^2}{a^2} + \frac{y^2}{b^2} = C . . . . . \left( 1 \right)\]
Differentiating with respect to x, we get
\[\frac{2x}{a^2} + \frac{2y}{b^2}y' = 0\]
\[ \Rightarrow \frac{x}{a^2} + \frac{y}{b^2}y' = 0 . . . . . \left( 2 \right)\]
Again differentiating with respect to x, we get
\[ \Rightarrow \frac{1}{a^2} + \frac{1}{b^2} \left( y' \right)^2 + \frac{y}{b^2}y'' = 0 . . . . . \left( 3 \right)\]
Multiplying throughout by x, we get
\[\frac{x}{a^2} + \frac{x}{b^2} \left( y' \right)^2 + \frac{xy}{b^2}y'' = 0 . . . . . \left( 4 \right)\]
\[\text{ Subtracting }\left( 2 \right)\text{ from }\left( 4 \right),\text{ we get }\]
\[\frac{1}{b^2}\left[ x \left( y' \right)^2 + xyy'' - yy' \right] = 0 \]
\[ \Rightarrow x \left( y' \right)^2 + xyy'' - yy' = 0\]
Dividing both sides by xyy', we get
\[\frac{y'}{y} + \frac{y''}{y'} - \frac{1}{x} = 0\]
\[\Rightarrow \frac{y''}{y'} + \frac{y'}{y} - \frac{1}{x} = 0\]
APPEARS IN
संबंधित प्रश्न
Assume that a rain drop evaporates at a rate proportional to its surface area. Form a differential equation involving the rate of change of the radius of the rain drop.
Form the differential equation representing the family of ellipses having centre at the origin and foci on x-axis.
Show that the differential equation of which \[y = 2\left( x^2 - 1 \right) + c e^{- x^2}\] is a solution is \[\frac{dy}{dx} + 2xy = 4 x^3\]
For the following differential equation verify that the accompanying function is a solution:
Differential equation | Function |
\[x + y\frac{dy}{dx} = 0\]
|
\[y = \pm \sqrt{a^2 - x^2}\]
|
For the following differential equation verify that the accompanying function is a solution:
Differential equation | Function |
\[y = \left( \frac{dy}{dx} \right)^2\]
|
\[y = \frac{1}{4} \left( x \pm a \right)^2\]
|
Find the particular solution of the differential equation \[\frac{dy}{dx} = \frac{xy}{x^2 + y^2}\] given that y = 1 when x = 0.
Solve the following initial value problem:-
\[\frac{dy}{dx} + 2y = e^{- 2x} \sin x, y\left( 0 \right) = 0\]
If the marginal cost of manufacturing a certain item is given by C' (x) = \[\frac{dC}{dx}\] = 2 + 0.15 x. Find the total cost function C (x), given that C (0) = 100.
Find the equation of the curve passing through the point \[\left( 1, \frac{\pi}{4} \right)\] and tangent at any point of which makes an angle tan−1 \[\left( \frac{y}{x} - \cos^2 \frac{y}{x} \right)\] with x-axis.
Find the curve for which the intercept cut-off by a tangent on x-axis is equal to four times the ordinate of the point of contact.
Radium decomposes at a rate proportional to the quantity of radium present. It is found that in 25 years, approximately 1.1% of a certain quantity of radium has decomposed. Determine approximately how long it will take for one-half of the original amount of radium to decompose?
Show that all curves for which the slope at any point (x, y) on it is \[\frac{x^2 + y^2}{2xy}\] are rectangular hyperbola.
Find the equation of the curve passing through the point (0, 1) if the slope of the tangent to the curve at each of its point is equal to the sum of the abscissa and the product of the abscissa and the ordinate of the point.
The differential equation obtained on eliminating A and B from y = A cos ωt + B sin ωt, is
The differential equation
\[\frac{dy}{dx} + Py = Q y^n , n > 2\] can be reduced to linear form by substituting
What is integrating factor of \[\frac{dy}{dx}\] + y sec x = tan x?
Integrating factor of the differential equation cos \[x\frac{dy}{dx} + y \sin x = 1\], is
Show that y = ae2x + be−x is a solution of the differential equation \[\frac{d^2 y}{d x^2} - \frac{dy}{dx} - 2y = 0\]
Form the differential equation of the family of circles having centre on y-axis and radius 3 unit.
In each of the following examples, verify that the given function is a solution of the corresponding differential equation.
Solution | D.E. |
y = ex | `dy/ dx= y` |
Determine the order and degree of the following differential equations.
Solution | D.E. |
y = 1 − logx | `x^2(d^2y)/dx^2 = 1` |
y dx – x dy + log x dx = 0
Solve the differential equation `("d"y)/("d"x) + y` = e−x
Solve: `("d"y)/("d"x) + 2/xy` = x2
Verify y = log x + c is the solution of differential equation `x ("d"^2y)/("d"x^2) + ("d"y)/("d"x)` = 0
The differential equation of all non horizontal lines in a plane is `("d"^2x)/("d"y^2)` = 0