Advertisements
Advertisements
प्रश्न
उत्तर
We have,
\[\frac{dy}{dx} = \tan^{- 1} x\]
\[ \Rightarrow dy = \left( \tan^{- 1} x \right)dx\]
Integrating both sides, we get
\[\int dy = \int\left( \tan^{- 1} x \right)dx\]
\[ \Rightarrow y = \tan^{- 1} x\int1 dx - \int\left[ \frac{d}{dx}\left( \tan^{- 1} x \right)\int1 dx \right]dx\]
\[ \Rightarrow y = x \tan^{- 1} x - \int\frac{x}{1 + x^2}dx\]
\[ \Rightarrow y = x \tan^{- 1} x - \frac{1}{2}\int\frac{2x}{1 + x^2}dx\]
\[ \Rightarrow y = x \tan^{- 1} x - \frac{1}{2}\log\left| 1 + x^2 \right| + C\]
\[\text{ So, } y = x \tan^{- 1} x - \frac{1}{2}\log\left| 1 + x^2 \right| +\text{C is defined for all }x \in R.\]
\[\text{ Hence, } y = x \tan^{- 1} x - \frac{1}{2}\log\left| 1 + x^2 \right| +\text{C is the solution to the given differential equation.}\]
APPEARS IN
संबंधित प्रश्न
Solve the equation for x: `sin^(-1) 5/x + sin^(-1) 12/x = pi/2, x != 0`
Verify that y2 = 4a (x + a) is a solution of the differential equations
\[y\left\{ 1 - \left( \frac{dy}{dx} \right)^2 \right\} = 2x\frac{dy}{dx}\]
x cos y dy = (xex log x + ex) dx
(1 − x2) dy + xy dx = xy2 dx
Solve the differential equation \[\frac{dy}{dx} = \frac{2x\left( \log x + 1 \right)}{\sin y + y \cos y}\], given that y = 0, when x = 1.
(x + y) (dx − dy) = dx + dy
x2 dy + y (x + y) dx = 0
Solve the following initial value problem:-
\[\frac{dy}{dx} + y\cot x = 2\cos x, y\left( \frac{\pi}{2} \right) = 0\]
The slope of the tangent at a point P (x, y) on a curve is \[\frac{- x}{y}\]. If the curve passes through the point (3, −4), find the equation of the curve.
The rate of increase of bacteria in a culture is proportional to the number of bacteria present and it is found that the number doubles in 6 hours. Prove that the bacteria becomes 8 times at the end of 18 hours.
Find the equation of the curve that passes through the point (0, a) and is such that at any point (x, y) on it, the product of its slope and the ordinate is equal to the abscissa.
Define a differential equation.
The differential equation of the ellipse \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = C\] is
The differential equation \[x\frac{dy}{dx} - y = x^2\], has the general solution
The differential equation
\[\frac{dy}{dx} + Py = Q y^n , n > 2\] can be reduced to linear form by substituting
Verify that the function y = e−3x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + \frac{dy}{dx} - 6y = 0.\]
In the following verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation:-
y = ex + 1 y'' − y' = 0
For the following differential equation find the particular solution.
`dy/ dx = (4x + y + 1),
when y = 1, x = 0
Choose the correct alternative.
Bacteria increases at the rate proportional to the number present. If the original number M doubles in 3 hours, then the number of bacteria will be 4M in
x2y dx – (x3 + y3) dy = 0
Select and write the correct alternative from the given option for the question
The differential equation of y = Ae5x + Be–5x is
Solve the following differential equation
`yx ("d"y)/("d"x)` = x2 + 2y2
For the differential equation, find the particular solution
`("d"y)/("d"x)` = (4x +y + 1), when y = 1, x = 0
Solve the following differential equation y2dx + (xy + x2) dy = 0
Choose the correct alternative:
Differential equation of the function c + 4yx = 0 is
State whether the following statement is True or False:
The integrating factor of the differential equation `("d"y)/("d"x) - y` = x is e–x
The function y = cx is the solution of differential equation `("d"y)/("d"x) = y/x`
Find the particular solution of the following differential equation
`("d"y)/("d"x)` = e2y cos x, when x = `pi/6`, y = 0.
Solution: The given D.E. is `("d"y)/("d"x)` = e2y cos x
∴ `1/"e"^(2y) "d"y` = cos x dx
Integrating, we get
`int square "d"y` = cos x dx
∴ `("e"^(-2y))/(-2)` = sin x + c1
∴ e–2y = – 2sin x – 2c1
∴ `square` = c, where c = – 2c1
This is general solution.
When x = `pi/6`, y = 0, we have
`"e"^0 + 2sin pi/6` = c
∴ c = `square`
∴ particular solution is `square`
Solve `x^2 "dy"/"dx" - xy = 1 + cos(y/x)`, x ≠ 0 and x = 1, y = `pi/2`
The integrating factor of the differential equation `"dy"/"dx" (x log x) + y` = 2logx is ______.