हिंदी

D Y D X = Sec ( X + Y ) - Mathematics

Advertisements
Advertisements

प्रश्न

\[\frac{dy}{dx} = \sec\left( x + y \right)\]
योग

उत्तर

We have,

\[\frac{dy}{dx} = \sec\left( x + y \right)\]

\[\frac{dy}{dx} = \frac{1}{\cos\left( x + y \right)}\]

Let x + y = v

\[ \Rightarrow 1 + \frac{dy}{dx} = \frac{dv}{dx}\]

\[ \Rightarrow \frac{dy}{dx} = \frac{dv}{dx} - 1\]

\[ \therefore \frac{dv}{dx} - 1 = \frac{1}{\cos v}\]

\[ \Rightarrow \frac{dv}{dx} = \frac{\cos v + 1}{\cos v}\]

\[ \Rightarrow \frac{\cos v}{\cos v + 1}dv = dx\]

Integrating both sides, we get

\[\int\frac{\cos v}{\cos v + 1}dv = \int dx\]

\[ \Rightarrow \int\frac{\cos v\left( 1 - \cos v \right)}{1 - \cos^2 v}dv = \int dx\]

\[ \Rightarrow \int\frac{\cos v\left( 1 - \cos v \right)}{\sin^2 v}dv = \int dx\]

\[ \Rightarrow \int\frac{\cos v - \cos^2 v}{\sin^2 v}dv = \int dx\]

\[ \Rightarrow \int\left( \cot v\ cosec + v - \cot^2 v \right)dv = \int dx\]

\[ \Rightarrow \int\left( \cot v\ cosec\ v - {cosec}^2 v + 1 \right)dv = \int dx\]

\[ \Rightarrow - cosec\ v + \cot v + v = x + C\]

\[ \Rightarrow - cosec \left( x + y \right) + \cot \left( x + y \right) + x + y = x + C\]

\[ \Rightarrow - cosec \left( x + y \right) + \cot \left( x + y \right) + y = C\]

\[ \Rightarrow \frac{- 1 + \cos \left( x + y \right)}{\sin \left( x + y \right)} + y = C\]

\[ \Rightarrow - \tan\left( \frac{x + y}{2} \right) + y = C\]

\[ \Rightarrow y = \tan\left( \frac{x + y}{2} \right) + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 22: Differential Equations - Exercise 22.08 [पृष्ठ ६६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 22 Differential Equations
Exercise 22.08 | Q 7 | पृष्ठ ६६

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Form the differential equation of the family of hyperbolas having foci on x-axis and centre at the origin.


Show that the function y = A cos 2x − B sin 2x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + 4y = 0\].


Show that y = ex (A cos x + B sin x) is the solution of the differential equation \[\frac{d^2 y}{d x^2} - 2\frac{dy}{dx} + 2y = 0\]


For the following differential equation verify that the accompanying function is a solution:

Differential equation Function
\[x^3 \frac{d^2 y}{d x^2} = 1\]
\[y = ax + b + \frac{1}{2x}\]

Differential equation \[\frac{d^2 y}{d x^2} + y = 0, y \left( 0 \right) = 0, y' \left( 0 \right) = 1\] Function y = sin x


Differential equation \[\frac{d^2 y}{d x^2} - 2\frac{dy}{dx} + y = 0, y \left( 0 \right) = 1, y' \left( 0 \right) = 2\] Function y = xex + ex


\[\left( x + 2 \right)\frac{dy}{dx} = x^2 + 3x + 7\]

\[\frac{dy}{dx} = \tan^{- 1} x\]


\[\frac{dy}{dx} - x \sin^2 x = \frac{1}{x \log x}\]

\[\frac{dy}{dx} = \sin^2 y\]

\[\frac{dy}{dx} = \left( e^x + 1 \right) y\]

x cos2 y  dx = y cos2 x dy


(1 − x2) dy + xy dx = xy2 dx


Solve the following differential equation: 
(xy2 + 2x) dx + (x2 y + 2y) dy = 0


Solve the following differential equation:
\[\text{ cosec }x \log y \frac{dy}{dx} + x^2 y^2 = 0\]


\[xy\frac{dy}{dx} = \left( x + 2 \right)\left( y + 2 \right), y\left( 1 \right) = - 1\]

\[\frac{dy}{dx}\cos\left( x - y \right) = 1\]

\[\frac{dy}{dx} + 1 = e^{x + y}\]

\[\frac{dy}{dx} = \frac{y^2 - x^2}{2xy}\]

\[2xy\frac{dy}{dx} = x^2 + y^2\]

Solve the following initial value problem:-
\[x\frac{dy}{dx} - y = \log x, y\left( 1 \right) = 0\]


Solve the following initial value problem:-

\[dy = \cos x\left( 2 - y\text{ cosec }x \right)dx\]


A curve is such that the length of the perpendicular from the origin on the tangent at any point P of the curve is equal to the abscissa of P. Prove that the differential equation of the curve is \[y^2 - 2xy\frac{dy}{dx} - x^2 = 0\], and hence find the curve.


Find the equation of the curve passing through the point (0, 1) if the slope of the tangent to the curve at each of its point is equal to the sum of the abscissa and the product of the abscissa and the ordinate of the point.


The differential equation of the ellipse \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = C\] is


The differential equation satisfied by ax2 + by2 = 1 is


Which of the following differential equations has y = C1 ex + C2 ex as the general solution?


Verify that the function y = e−3x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + \frac{dy}{dx} - 6y = 0.\]


Form the differential equation of the family of parabolas having vertex at origin and axis along positive y-axis.


For  the following differential equation find the particular solution.

`dy/ dx = (4x + y + 1),

when  y = 1, x = 0


Solve the following differential equation.

`dy/dx + y` = 3


Solve the following differential equation.

`dy/dx + 2xy = x`


The differential equation of `y = k_1e^x+ k_2 e^-x` is ______.


The solution of `dy/ dx` = 1 is ______


Select and write the correct alternative from the given option for the question

The differential equation of y = Ae5x + Be–5x is


For the differential equation, find the particular solution

`("d"y)/("d"x)` = (4x +y + 1), when y = 1, x = 0


The solution of differential equation `x^2 ("d"^2y)/("d"x^2)` = 1 is ______


Solve the differential equation `"dy"/"dx" + 2xy` = y


Solve: ydx – xdy = x2ydx.


The differential equation of all non horizontal lines in a plane is `("d"^2x)/("d"y^2)` = 0


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×