Advertisements
Advertisements
प्रश्न
Which of the following differential equations has y = C1 ex + C2 e−x as the general solution?
विकल्प
\[\frac{d^2 y}{d x^2} + y = 0\]
\[\frac{d^2 y}{d x^2} - y = 0\]
\[\frac{d^2 y}{d x^2} + 1 = 0\]
\[\frac{d^2 y}{d x^2} - 1 = 0\]
उत्तर
\[\frac{d^2 y}{d x^2} - y = 0\]
\[y = C_1 e^x + C_2 e^{- x} . . . . . \left( 1\right)\]
Differentiating both sides of (1) with respect to x, we get
\[\frac{dy}{dx} = C_1 e^x - C_2 e^{- x} . . . . . \left( 2 \right)\]
Differentiating both sides of (2) with respect to x, we get
\[\frac{d^2 y}{d x^2} = C_1 e^x + C_2 e^{- x} \]
\[ \Rightarrow \frac{d^2 y}{d x^2} = y ...........\left[\text{Using }\left( 1 \right)\text{ and }\left( 2 \right) \right]\]
\[ \Rightarrow \frac{d^2 y}{d x^2} - y = 0\]
APPEARS IN
संबंधित प्रश्न
Solve the equation for x: `sin^(-1) 5/x + sin^(-1) 12/x = pi/2, x != 0`
Solve the differential equation \[x\frac{dy}{dx} + \cot y = 0\] given that \[y = \frac{\pi}{4}\], when \[x=\sqrt{2}\]
Find the solution of the differential equation cos y dy + cos x sin y dx = 0 given that y = \[\frac{\pi}{2}\], when x = \[\frac{\pi}{2}\]
The volume of a spherical balloon being inflated changes at a constant rate. If initially its radius is 3 units and after 3 seconds it is 6 units. Find the radius of the balloon after `t` seconds.
Find the particular solution of the differential equation \[\frac{dy}{dx} = \frac{xy}{x^2 + y^2}\] given that y = 1 when x = 0.
Solve the following initial value problem:-
\[\frac{dy}{dx} + 2y = e^{- 2x} \sin x, y\left( 0 \right) = 0\]
Solve the following initial value problem:
\[\frac{dy}{dx} + y \cot x = 4x\text{ cosec }x, y\left( \frac{\pi}{2} \right) = 0\]
Solve the following initial value problem:-
\[\frac{dy}{dx} - 3y \cot x = \sin 2x; y = 2\text{ when }x = \frac{\pi}{2}\]
The population of a city increases at a rate proportional to the number of inhabitants present at any time t. If the population of the city was 200000 in 1990 and 250000 in 2000, what will be the population in 2010?
Radium decomposes at a rate proportional to the quantity of radium present. It is found that in 25 years, approximately 1.1% of a certain quantity of radium has decomposed. Determine approximately how long it will take for one-half of the original amount of radium to decompose?
Write the differential equation obtained by eliminating the arbitrary constant C in the equation x2 − y2 = C2.
The differential equation obtained on eliminating A and B from y = A cos ωt + B sin ωt, is
Which of the following is the integrating factor of (x log x) \[\frac{dy}{dx} + y\] = 2 log x?
In the following verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation:-
`y=sqrt(a^2-x^2)` `x+y(dy/dx)=0`
Find the coordinates of the centre, foci and equation of directrix of the hyperbola x2 – 3y2 – 4x = 8.
Find the equation of the plane passing through the point (1, -2, 1) and perpendicular to the line joining the points A(3, 2, 1) and B(1, 4, 2).
Choose the correct option from the given alternatives:
The solution of `1/"x" * "dy"/"dx" = tan^-1 "x"` is
Solve the following differential equation.
x2y dx − (x3 + y3 ) dy = 0
Solve the following differential equation.
`dy/dx + 2xy = x`
Solve the following differential equation.
dr + (2r)dθ= 8dθ
Select and write the correct alternative from the given option for the question
Differential equation of the function c + 4yx = 0 is
Solve the differential equation `("d"y)/("d"x) + y` = e−x
For the differential equation, find the particular solution (x – y2x) dx – (y + x2y) dy = 0 when x = 2, y = 0
Choose the correct alternative:
Solution of the equation `x("d"y)/("d"x)` = y log y is
Verify y = log x + c is the solution of differential equation `x ("d"^2y)/("d"x^2) + ("d"y)/("d"x)` = 0
The value of `dy/dx` if y = |x – 1| + |x – 4| at x = 3 is ______.