हिंदी

D Y D X = X 2 + X − 1 X , X ≠ 0 - Mathematics

Advertisements
Advertisements

प्रश्न

\[\frac{dy}{dx} = x^2 + x - \frac{1}{x}, x \neq 0\]
योग

उत्तर

We have, 
\[\frac{dy}{dx} = x^2 + x - \frac{1}{x}\]
\[ \Rightarrow dy = \left( x^2 + x - \frac{1}{x} \right)dx\]
Integrating both sides, we get
\[ \Rightarrow \int dy = \int\left( x^2 + x - \frac{1}{x} \right)dx\]
\[ \Rightarrow y = \frac{x^3}{3} + \frac{x^2}{2} - \log\left| x \right| + C\]
\[\text{ Clearly, } y = \frac{x^3}{3} + \frac{x^2}{2} - \log\left| x \right| +\text{ C is defined for all } x \in\text{ R except }x = 0 . \]
\[\text{ Hence, } y = \frac{x^3}{3} + \frac{x^2}{2} - \log\left| x \right| + C,\text{ where }x \in R- \left\{ 0 \right\}, \text{ is the solution to the given differential equation }.\]
shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 22: Differential Equations - Exercise 22.05 [पृष्ठ ३४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 22 Differential Equations
Exercise 22.05 | Q 1 | पृष्ठ ३४

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

\[y\frac{d^2 x}{d y^2} = y^2 + 1\]

Differential equation \[\frac{dy}{dx} + y = 2, y \left( 0 \right) = 3\] Function y = e−x + 2


x cos y dy = (xex log x + ex) dx


y (1 + ex) dy = (y + 1) ex dx


\[\frac{dy}{dx} = 1 - x + y - xy\]

dy + (x + 1) (y + 1) dx = 0


\[\frac{dy}{dx} = e^{x + y} + e^{- x + y}\]

Solve the following differential equation:
\[\text{ cosec }x \log y \frac{dy}{dx} + x^2 y^2 = 0\]


\[2\left( y + 3 \right) - xy\frac{dy}{dx} = 0\], y(1) = −2

In a bank principal increases at the rate of r% per year. Find the value of r if ₹100 double itself in 10 years (loge 2 = 0.6931).


\[\left( x + y \right)^2 \frac{dy}{dx} = 1\]

(x + y) (dx − dy) = dx + dy


\[\frac{dy}{dx} + 1 = e^{x + y}\]

x2 dy + y (x + y) dx = 0


y ex/y dx = (xex/y + y) dy


\[\frac{dy}{dx} = \frac{x}{2y + x}\]

\[\left[ x\sqrt{x^2 + y^2} - y^2 \right] dx + xy\ dy = 0\]

Solve the following initial value problem:-

\[\frac{dy}{dx} + 2y = e^{- 2x} \sin x, y\left( 0 \right) = 0\]


In a culture, the bacteria count is 100000. The number is increased by 10% in 2 hours. In how many hours will the count reach 200000, if the rate of growth of bacteria is proportional to the number present?


In a simple circuit of resistance R, self inductance L and voltage E, the current `i` at any time `t` is given by L \[\frac{di}{dt}\]+ R i = E. If E is constant and initially no current passes through the circuit, prove that \[i = \frac{E}{R}\left\{ 1 - e^{- \left( R/L \right)t} \right\}.\]


Experiments show that radium disintegrates at a rate proportional to the amount of radium present at the moment. Its half-life is 1590 years. What percentage will disappear in one year?


Find the equation of the curve passing through the point \[\left( 1, \frac{\pi}{4} \right)\]  and tangent at any point of which makes an angle tan−1  \[\left( \frac{y}{x} - \cos^2 \frac{y}{x} \right)\] with x-axis.


Find the curve for which the intercept cut-off by a tangent on x-axis is equal to four times the ordinate of the point of contact.

 

Find the equation to the curve satisfying x (x + 1) \[\frac{dy}{dx} - y\]  = x (x + 1) and passing through (1, 0).


A curve is such that the length of the perpendicular from the origin on the tangent at any point P of the curve is equal to the abscissa of P. Prove that the differential equation of the curve is \[y^2 - 2xy\frac{dy}{dx} - x^2 = 0\], and hence find the curve.


Find the equation of the curve passing through the point (0, 1) if the slope of the tangent to the curve at each of its point is equal to the sum of the abscissa and the product of the abscissa and the ordinate of the point.


The integrating factor of the differential equation (x log x)
\[\frac{dy}{dx} + y = 2 \log x\], is given by


The integrating factor of the differential equation \[x\frac{dy}{dx} - y = 2 x^2\]


Show that y = ae2x + be−x is a solution of the differential equation \[\frac{d^2 y}{d x^2} - \frac{dy}{dx} - 2y = 0\]


Find the coordinates of the centre, foci and equation of directrix of the hyperbola x2 – 3y2 – 4x = 8.


Solve the differential equation:

`"x"("dy")/("dx")+"y"=3"x"^2-2`


Choose the correct option from the given alternatives:

The solution of `1/"x" * "dy"/"dx" = tan^-1 "x"` is


Solve the following differential equation.

`dy/dx + y = e ^-x`


Solve the following differential equation.

y dx + (x - y2 ) dy = 0


Solve the following differential equation.

`(x + a) dy/dx = – y + a`


Solve the following differential equation y2dx + (xy + x2) dy = 0


Choose the correct alternative:

Solution of the equation `x("d"y)/("d"x)` = y log y is


State whether the following statement is True or False:

The integrating factor of the differential equation `("d"y)/("d"x) - y` = x is e–x 


Solve the following differential equation `("d"y)/("d"x)` = x2y + y


The integrating factor of the differential equation `"dy"/"dx" (x log x) + y` = 2logx is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×