हिंदी

Solve the Following Differential Equation: Cosec X Log Y D Y D X + X 2 Y 2 = 0 - Mathematics

Advertisements
Advertisements

प्रश्न

Solve the following differential equation:
\[\text{ cosec }x \log y \frac{dy}{dx} + x^2 y^2 = 0\]

योग

उत्तर

We have,

\[\text{ cosec }x \log y \frac{dy}{dx} + x^2 y^2 = 0\]
\[ \Rightarrow \text{ cosec }x \log y \frac{dy}{dx} = - x^2 y^2 \]
\[ \Rightarrow \frac{1}{y^2}\log y dy = - \frac{x^2}{\text{ cosec }x}dx\]
\[ \Rightarrow \frac{1}{y^2}\log y dy = - x^2 \sin x dx\]
\[ \Rightarrow \int\frac{1}{y^2}\log y dy = - \int x^2 \sin x dx\]
\[\Rightarrow - \frac{\log y}{y} + \int\frac{1}{y} \times \frac{1}{y} = - \left[ - x^2 \cos x + \int2x\cos x dx \right] + C\]
\[ \Rightarrow - \frac{\log y}{y} - \frac{1}{y} = - \left[ - x^2 \cos x + 2x\sin x - 2\int\sin x dx \right] + C\]
\[ \Rightarrow - \left( \frac{1 + \log y}{y} \right) = - \left[ - x^2 \cos x + 2x\sin x + 2\cos x dx \right] + C\]
\[ \Rightarrow - \left( \frac{1 + \log y}{y} \right) - x^2 \cos x + 2\left( x\sin x + \cos x \right) = C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 22: Differential Equations - Exercise 22.07 [पृष्ठ ५५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 22 Differential Equations
Exercise 22.07 | Q 37.2 | पृष्ठ ५५

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Prove that:

`int_0^(2a)f(x)dx = int_0^af(x)dx + int_0^af(2a - x)dx`


Find the differential equation of all the parabolas with latus rectum '4a' and whose axes are parallel to x-axis.


Show that the function y = A cos 2x − B sin 2x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + 4y = 0\].


Verify that y = \[\frac{a}{x} + b\] is a solution of the differential equation
\[\frac{d^2 y}{d x^2} + \frac{2}{x}\left( \frac{dy}{dx} \right) = 0\]


Hence, the given function is the solution to the given differential equation. \[\frac{c - x}{1 + cx}\] is a solution of the differential equation \[(1+x^2)\frac{dy}{dx}+(1+y^2)=0\].


For the following differential equation verify that the accompanying function is a solution:

Differential equation Function
\[x\frac{dy}{dx} + y = y^2\]
\[y = \frac{a}{x + a}\]

For the following differential equation verify that the accompanying function is a solution:

Differential equation Function
\[y = \left( \frac{dy}{dx} \right)^2\]
\[y = \frac{1}{4} \left( x \pm a \right)^2\]

\[\frac{dy}{dx} = x^5 + x^2 - \frac{2}{x}, x \neq 0\]

\[\frac{dy}{dx} = \log x\]

(1 + x2) dy = xy dx


xy (y + 1) dy = (x2 + 1) dx


(y2 + 1) dx − (x2 + 1) dy = 0


Solve the following differential equation:
\[y e^\frac{x}{y} dx = \left( x e^\frac{x}{y} + y^2 \right)dy, y \neq 0\]

 


\[\frac{dr}{dt} = - rt, r\left( 0 \right) = r_0\]

In a culture the bacteria count is 100000. The number is increased by 10% in 2 hours. In how many hours will the count reach 200000, if the rate of growth of bacteria is proportional to the number present.


A population grows at the rate of 5% per year. How long does it take for the population to double?


If the marginal cost of manufacturing a certain item is given by C' (x) = \[\frac{dC}{dx}\] = 2 + 0.15 x. Find the total cost function C (x), given that C (0) = 100.

 

Find the curve for which the intercept cut-off by a tangent on x-axis is equal to four times the ordinate of the point of contact.

 

Find the equation of the curve such that the portion of the x-axis cut off between the origin and the tangent at a point is twice the abscissa and which passes through the point (1, 2).


Find the equation of the curve which passes through the origin and has the slope x + 3y− 1 at any point (x, y) on it.


Define a differential equation.


Write the differential equation obtained by eliminating the arbitrary constant C in the equation x2 − y2 = C2.


Write the differential equation obtained eliminating the arbitrary constant C in the equation xy = C2.


Which of the following is the integrating factor of (x log x) \[\frac{dy}{dx} + y\] = 2 log x?


Which of the following differential equations has y = C1 ex + C2 ex as the general solution?


Solve the following differential equation : \[\left( \sqrt{1 + x^2 + y^2 + x^2 y^2} \right) dx + xy \ dy = 0\].


y2 dx + (x2 − xy + y2) dy = 0


Form the differential equation of the family of parabolas having vertex at origin and axis along positive y-axis.


Choose the correct option from the given alternatives:

The solution of `1/"x" * "dy"/"dx" = tan^-1 "x"` is


Solve the following differential equation.

`dy/dx + 2xy = x`


Solve the following differential equation.

`(x + a) dy/dx = – y + a`


Solve the following differential equation.

dr + (2r)dθ= 8dθ


Choose the correct alternative.

The integrating factor of `dy/dx -  y = e^x `is ex, then its solution is


Solve:

(x + y) dy = a2 dx


x2y dx – (x3 + y3) dy = 0


Select and write the correct alternative from the given option for the question 

Differential equation of the function c + 4yx = 0 is


Choose the correct alternative:

General solution of `y - x ("d"y)/("d"x)` = 0 is


An appropriate substitution to solve the differential equation `"dx"/"dy" = (x^2 log(x/y) - x^2)/(xy log(x/y))` is ______.


Solution of `x("d"y)/("d"x) = y + x tan  y/x` is `sin(y/x)` = cx


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×