हिंदी

For the Following Differential Equation Verify that the Accompanying Function is a Solution: Differential Equation Function X D Y D X + Y = Y 2 Y = a X + a - Mathematics

Advertisements
Advertisements

प्रश्न

For the following differential equation verify that the accompanying function is a solution:

Differential equation Function
\[x\frac{dy}{dx} + y = y^2\]
\[y = \frac{a}{x + a}\]

उत्तर

We have,
\[y = \frac{a}{x + a}\]
\[ \Rightarrow xy + ay = a\]
\[ \Rightarrow xy = a\left( 1 - y \right)\]
\[ \Rightarrow \frac{xy}{1 - y} = a\]
\[ \Rightarrow \frac{1 - y}{xy} = \frac{1}{a} . . . . . \left( 1 \right)\]
given differential equation: \[x\frac{dy}{dx} + y = y^2\]
Differentiating both sides of (1) with respect to x, we get 
\[\frac{xy\left( 0 - \frac{dy}{dx} \right) - \left( 1 - y \right)\left( x\frac{dy}{dx} + y \right)}{\left( xy \right)^2} = 0\]
\[ \Rightarrow xy\left( - \frac{dy}{dx} \right) - \left( 1 - y \right)\left( x\frac{dy}{dx} + y \right) = 0\]
\[ \Rightarrow - xy\frac{dy}{dx} - x\frac{dy}{dx} - y + xy\frac{dy}{dx} + y^2 = 0\]
\[ \Rightarrow - x\frac{dy}{dx} - y + y^2 = 0\]
\[ \Rightarrow x\frac{dy}{dx} + y = y^2\]
Hence, the given function is the solution to the given differential equation.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 22: Differential Equations - Exercise 22.03 [पृष्ठ २५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 22 Differential Equations
Exercise 22.03 | Q 21.3 | पृष्ठ २५

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

\[\frac{d^2 y}{d x^2} + \left( \frac{dy}{dx} \right)^2 + xy = 0\]

Verify that y = 4 sin 3x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + 9y = 0\]


Show that y = ex (A cos x + B sin x) is the solution of the differential equation \[\frac{d^2 y}{d x^2} - 2\frac{dy}{dx} + 2y = 0\]


\[x\frac{dy}{dx} + 1 = 0 ; y \left( - 1 \right) = 0\]

\[\left( x - 1 \right)\frac{dy}{dx} = 2 xy\]

(1 + x) (1 + y2) dx + (1 + y) (1 + x2) dy = 0


(y + xy) dx + (x − xy2) dy = 0


(y2 + 1) dx − (x2 + 1) dy = 0


Solve the following differential equation: 
(xy2 + 2x) dx + (x2 y + 2y) dy = 0


\[\frac{dy}{dx} = 2 e^x y^3 , y\left( 0 \right) = \frac{1}{2}\]

Find the particular solution of the differential equation \[\frac{dy}{dx} = - 4x y^2\]  given that y = 1, when x = 0.


Find the particular solution of the differential equation
(1 – y2) (1 + log x) dx + 2xy dy = 0, given that y = 0 when x = 1.


\[\frac{dy}{dx} = \left( x + y + 1 \right)^2\]

\[\left( x + y \right)^2 \frac{dy}{dx} = 1\]

Solve the following initial value problem:-
\[x\frac{dy}{dx} - y = \log x, y\left( 1 \right) = 0\]


A population grows at the rate of 5% per year. How long does it take for the population to double?


If the interest is compounded continuously at 6% per annum, how much worth Rs 1000 will be after 10 years? How long will it take to double Rs 1000?


Find the equation of the curve which passes through the point (2, 2) and satisfies the differential equation
\[y - x\frac{dy}{dx} = y^2 + \frac{dy}{dx}\]


Find the equation of the curve passing through the point \[\left( 1, \frac{\pi}{4} \right)\]  and tangent at any point of which makes an angle tan−1  \[\left( \frac{y}{x} - \cos^2 \frac{y}{x} \right)\] with x-axis.


Find the curve for which the intercept cut-off by a tangent on x-axis is equal to four times the ordinate of the point of contact.

 

The x-intercept of the tangent line to a curve is equal to the ordinate of the point of contact. Find the particular curve through the point (1, 1).


Define a differential equation.


The differential equation \[x\frac{dy}{dx} - y = x^2\], has the general solution


The integrating factor of the differential equation \[\left( 1 - y^2 \right)\frac{dx}{dy} + yx = ay\left( - 1 < y < 1 \right)\] is ______.


y2 dx + (x2 − xy + y2) dy = 0


Form the differential equation representing the family of parabolas having vertex at origin and axis along positive direction of x-axis.


Solve the following differential equation.

`(dθ)/dt  = − k (θ − θ_0)`


Solve the following differential equation.

x2y dx − (x3 + y3 ) dy = 0


Solve the following differential equation.

y dx + (x - y2 ) dy = 0


Solve the differential equation:

dr = a r dθ − θ dr


State whether the following statement is True or False:

The integrating factor of the differential equation `("d"y)/("d"x) - y` = x is e–x 


An appropriate substitution to solve the differential equation `"dx"/"dy" = (x^2 log(x/y) - x^2)/(xy log(x/y))` is ______.


Integrating factor of the differential equation `x "dy"/"dx" - y` = sinx is ______.


Solve the differential equation `"dy"/"dx" + 2xy` = y


Solve: `("d"y)/("d"x) = cos(x + y) + sin(x + y)`. [Hint: Substitute x + y = z]


There are n students in a school. If r % among the students are 12 years or younger, which of the following expressions represents the number of students who are older than 12?


The value of `dy/dx` if y = |x – 1| + |x – 4| at x = 3 is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×