हिंदी

For the Following Differential Equation Verify that the Accompanying Function is a Solution: Differential Equation Function X 3 D 2 Y D X 2 = 1 Y = a X + B + 1 2 X - Mathematics

Advertisements
Advertisements

प्रश्न

For the following differential equation verify that the accompanying function is a solution:

Differential equation Function
\[x^3 \frac{d^2 y}{d x^2} = 1\]
\[y = ax + b + \frac{1}{2x}\]
योग

उत्तर

We have,

\[y = ax + b + \frac{1}{2x} . . . . . \left( 1 \right)\]

Differentiating both sides of (1) with respect to x, we get

\[\frac{dy}{dx} = a - \frac{1}{2 x^2} . . . . . \left( 2 \right)\]

Now differentiating both sides of (2) with respect to x, we get

\[ \Rightarrow \frac{d^2 y}{d x^2} = \left( - \frac{1}{2} \right) \times \left( \frac{- 2}{x^3} \right)\]

\[ \Rightarrow \frac{d^2 y}{d x^2} = \frac{1}{x^3}\]

\[ \Rightarrow x^3 \frac{d^2 y}{d x^2} = 1\]

Hence, the given function is the solution to the given differential equation.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 22: Differential Equations - Exercise 22.03 [पृष्ठ २५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 22 Differential Equations
Exercise 22.03 | Q 21.4 | पृष्ठ २५

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

\[\left( \frac{dy}{dx} \right)^2 + \frac{1}{dy/dx} = 2\]

Form the differential equation of the family of hyperbolas having foci on x-axis and centre at the origin.


Show that the function y = A cos x + B sin x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + y = 0\]


For the following differential equation verify that the accompanying function is a solution:

Differential equation Function
\[x\frac{dy}{dx} = y\]
y = ax

\[\frac{dy}{dx} = \tan^{- 1} x\]


(sin x + cos x) dy + (cos x − sin x) dx = 0


\[\left( 1 + x^2 \right)\frac{dy}{dx} - x = 2 \tan^{- 1} x\]

(y2 + 1) dx − (x2 + 1) dy = 0


Find the particular solution of the differential equation \[\frac{dy}{dx} = - 4x y^2\]  given that y = 1, when x = 0.


If y(x) is a solution of the different equation \[\left( \frac{2 + \sin x}{1 + y} \right)\frac{dy}{dx} = - \cos x\] and y(0) = 1, then find the value of y(π/2).


Find the particular solution of the differential equation
(1 – y2) (1 + log x) dx + 2xy dy = 0, given that y = 0 when x = 1.


\[x^2 \frac{dy}{dx} = x^2 - 2 y^2 + xy\]

\[xy\frac{dy}{dx} = x^2 - y^2\]

y ex/y dx = (xex/y + y) dy


\[\frac{dy}{dx} = \frac{y}{x} - \sqrt{\frac{y^2}{x^2} - 1}\]

Solve the following initial value problem:-

\[dy = \cos x\left( 2 - y\text{ cosec }x \right)dx\]


A bank pays interest by continuous compounding, that is, by treating the interest rate as the instantaneous rate of change of principal. Suppose in an account interest accrues at 8% per year, compounded continuously. Calculate the percentage increase in such an account over one year.


Find the equation of the curve which passes through the point (3, −4) and has the slope \[\frac{2y}{x}\]  at any point (x, y) on it.


Write the differential equation obtained eliminating the arbitrary constant C in the equation xy = C2.


Integrating factor of the differential equation cos \[x\frac{dy}{dx} + y\] sin x = 1, is


The differential equation of the ellipse \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = C\] is


What is integrating factor of \[\frac{dy}{dx}\] + y sec x = tan x?


The integrating factor of the differential equation \[x\frac{dy}{dx} - y = 2 x^2\]


Solve the following differential equation : \[\left( \sqrt{1 + x^2 + y^2 + x^2 y^2} \right) dx + xy \ dy = 0\].


If xmyn = (x + y)m+n, prove that \[\frac{dy}{dx} = \frac{y}{x} .\]


Show that y = ae2x + be−x is a solution of the differential equation \[\frac{d^2 y}{d x^2} - \frac{dy}{dx} - 2y = 0\]


Choose the correct option from the given alternatives:

The solution of `1/"x" * "dy"/"dx" = tan^-1 "x"` is


In the following example, verify that the given function is a solution of the corresponding differential equation.

Solution D.E.
xy = log y + k y' (1 - xy) = y2

In the following example, verify that the given function is a solution of the corresponding differential equation.

Solution D.E.
y = xn `x^2(d^2y)/dx^2 - n xx (xdy)/dx + ny =0`

Solve the following differential equation.

xdx + 2y dx = 0


Solve the following differential equation.

y2 dx + (xy + x2 ) dy = 0


Choose the correct alternative.

The differential equation of y = `k_1 + k_2/x` is


 `dy/dx = log x`


The function y = cx is the solution of differential equation `("d"y)/("d"x) = y/x`


The differential equation of all non horizontal lines in a plane is `("d"^2x)/("d"y^2)` = 0


If `y = log_2 log_2(x)` then `(dy)/(dx)` =


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×