Advertisements
Advertisements
प्रश्न
The differential equation of all non horizontal lines in a plane is `("d"^2x)/("d"y^2)` = 0
विकल्प
True
False
उत्तर
This statement is True.
Explanation:
Let y = mx + c be the non-horizontal line in a plane
∴ `("d"y)/("d"x)` = m and `("d"^2y)/("d"x^2)` = 0.
APPEARS IN
संबंधित प्रश्न
Form the differential equation of the family of hyperbolas having foci on x-axis and centre at the origin.
Show that Ax2 + By2 = 1 is a solution of the differential equation x \[\left\{ y\frac{d^2 y}{d x^2} + \left( \frac{dy}{dx} \right)^2 \right\} = y\frac{dy}{dx}\]
Show that y = ex (A cos x + B sin x) is the solution of the differential equation \[\frac{d^2 y}{d x^2} - 2\frac{dy}{dx} + 2y = 0\]
Verify that y = − x − 1 is a solution of the differential equation (y − x) dy − (y2 − x2) dx = 0.
x cos2 y dx = y cos2 x dy
Solve the following differential equation:
\[xy\frac{dy}{dx} = 1 + x + y + xy\]
x2 dy + y (x + y) dx = 0
\[\frac{dy}{dx} = \frac{y}{x} + \sin\left( \frac{y}{x} \right)\]
Solve the following initial value problem:-
\[y' + y = e^x , y\left( 0 \right) = \frac{1}{2}\]
Solve the following initial value problem:-
\[dy = \cos x\left( 2 - y\text{ cosec }x \right)dx\]
The rate of increase in the number of bacteria in a certain bacteria culture is proportional to the number present. Given the number triples in 5 hrs, find how many bacteria will be present after 10 hours. Also find the time necessary for the number of bacteria to be 10 times the number of initial present.
Experiments show that radium disintegrates at a rate proportional to the amount of radium present at the moment. Its half-life is 1590 years. What percentage will disappear in one year?
Find the equation of the curve passing through the point \[\left( 1, \frac{\pi}{4} \right)\] and tangent at any point of which makes an angle tan−1 \[\left( \frac{y}{x} - \cos^2 \frac{y}{x} \right)\] with x-axis.
Write the differential equation obtained eliminating the arbitrary constant C in the equation xy = C2.
If xmyn = (x + y)m+n, prove that \[\frac{dy}{dx} = \frac{y}{x} .\]
Find the equation of the plane passing through the point (1, -2, 1) and perpendicular to the line joining the points A(3, 2, 1) and B(1, 4, 2).
In each of the following examples, verify that the given function is a solution of the corresponding differential equation.
Solution | D.E. |
y = ex | `dy/ dx= y` |
Determine the order and degree of the following differential equations.
Solution | D.E |
y = aex + be−x | `(d^2y)/dx^2= 1` |
Solve the following differential equation.
`dy/dx + y = e ^-x`
The solution of `dy/ dx` = 1 is ______
Solve
`dy/dx + 2/ x y = x^2`
`dy/dx = log x`
Select and write the correct alternative from the given option for the question
The differential equation of y = Ae5x + Be–5x is
Solve the following differential equation
`yx ("d"y)/("d"x)` = x2 + 2y2
Solve the following differential equation
`x^2 ("d"y)/("d"x)` = x2 + xy − y2
Choose the correct alternative:
General solution of `y - x ("d"y)/("d"x)` = 0 is
The function y = cx is the solution of differential equation `("d"y)/("d"x) = y/x`
Solve the differential equation `"dy"/"dx" + 2xy` = y