हिंदी

Solve the differential equation dydxdydx+2xy = y - Mathematics

Advertisements
Advertisements

प्रश्न

Solve the differential equation `"dy"/"dx" + 2xy` = y

योग

उत्तर

Given equation is `"dy"/"dx" + 2xy` = y.

⇒ `"dy"/"dx"` = y – xy

⇒ `"dy"/"dx"` = y(1 –2x)

⇒ `"dy"/y` = (1 –2x)dx

Integrating both sides, we have

`int "dy"/"dx" = int (1 - 2x)"d"x`

⇒ log y = x – x2 + log c

⇒ log y – log c = x – x2

⇒ `log  y/"c"` = x – x2

⇒ `y/"c" = "e"^(x - x^2)`

∴ y = `"c" . "e"^(x - x^2)` 

Hence, the required solution is y = `"c" . "e"^(x - x^2)` .

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 9: Differential Equations - Exercise [पृष्ठ १९३]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
अध्याय 9 Differential Equations
Exercise | Q 5 | पृष्ठ १९३

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

\[\frac{d^2 y}{d x^2} + 4y = 0\]

Show that the function y = A cos x + B sin x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + y = 0\]


Verify that y2 = 4ax is a solution of the differential equation y = x \[\frac{dy}{dx} + a\frac{dx}{dy}\]


Show that y = e−x + ax + b is solution of the differential equation\[e^x \frac{d^2 y}{d x^2} = 1\]

 


\[\frac{dy}{dx} + 2x = e^{3x}\]

\[\sin\left( \frac{dy}{dx} \right) = k ; y\left( 0 \right) = 1\]

xy (y + 1) dy = (x2 + 1) dx


xy dy = (y − 1) (x + 1) dx


(1 − x2) dy + xy dx = xy2 dx


dy + (x + 1) (y + 1) dx = 0


\[\frac{dr}{dt} = - rt, r\left( 0 \right) = r_0\]

Find the particular solution of the differential equation \[\frac{dy}{dx} = - 4x y^2\]  given that y = 1, when x = 0.


\[x^2 \frac{dy}{dx} = x^2 + xy + y^2 \]


\[\frac{dy}{dx} = \frac{x}{2y + x}\]

\[\left[ x\sqrt{x^2 + y^2} - y^2 \right] dx + xy\ dy = 0\]

Solve the following initial value problem:
\[\frac{dy}{dx} + y \cot x = 4x\text{ cosec }x, y\left( \frac{\pi}{2} \right) = 0\]


Solve the following initial value problem:-

\[\frac{dy}{dx} - 3y \cot x = \sin 2x; y = 2\text{ when }x = \frac{\pi}{2}\]


The solution of the differential equation \[\frac{dy}{dx} = \frac{ax + g}{by + f}\] represents a circle when


Choose the correct option from the given alternatives:

The differential equation `"y" "dy"/"dx" + "x" = 0` represents family of


For  the following differential equation find the particular solution.

`dy/ dx = (4x + y + 1),

when  y = 1, x = 0


Solve the following differential equation.

(x2 − y2 ) dx + 2xy dy = 0


Solve the following differential equation.

`x^2 dy/dx = x^2 +xy - y^2`


Solve the following differential equation.

`(x + a) dy/dx = – y + a`


Choose the correct alternative.

The differential equation of y = `k_1 + k_2/x` is


`xy dy/dx  = x^2 + 2y^2`


A man is moving away from a tower 41.6 m high at a rate of 2 m/s. If the eye level of the man is 1.6 m above the ground, then the rate at which the angle of elevation of the top of the tower changes, when he is at a distance of 30 m from the foot of the tower, is


The differential equation (1 + y2)x dx – (1 + x2)y dy = 0 represents a family of:


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×