Advertisements
Advertisements
प्रश्न
The solution of the differential equation \[\frac{dy}{dx} = \frac{ax + g}{by + f}\] represents a circle when
विकल्प
a = b
a = −b
a = −2b
a = 2b
उत्तर
a = −b
We have,
\[\frac{dy}{dx} = \frac{ax + g}{by + f}\]
\[ \Rightarrow \left( by + f \right)dy = \left( ax + g \right)dx\]
Integrating both sides, we get
\[\int\left( by + f \right)dy = \int\left( ax + g \right)dx\]
\[ \Rightarrow b\frac{y^2}{2} + fy = a\frac{x^2}{2} + gx + C\]
\[ \Rightarrow b\frac{y^2}{2} + fy - a\frac{x^2}{2} - gx = C\]
\[ \Rightarrow b y^2 + 2fy - a x^2 - 2gx - 2C = 0\]
The above equation represents a circle .
\[\text{ Therefore, the coffecients of }x^2\text{ and }y^2\text{ must be equal . }\]
\[ i . e . - a = b\]
\[ \Rightarrow a = - b\]
APPEARS IN
संबंधित प्रश्न
If 1, `omega` and `omega^2` are the cube roots of unity, prove `(a + b omega + c omega^2)/(c + s omega + b omega^2) = omega^2`
Form the differential equation of the family of hyperbolas having foci on x-axis and centre at the origin.
For the following differential equation verify that the accompanying function is a solution:
Differential equation | Function |
\[x\frac{dy}{dx} + y = y^2\]
|
\[y = \frac{a}{x + a}\]
|
Differential equation \[\frac{dy}{dx} = y, y\left( 0 \right) = 1\]
Function y = ex
Solve the following differential equation:
\[xy\frac{dy}{dx} = 1 + x + y + xy\]
(x + y) (dx − dy) = dx + dy
3x2 dy = (3xy + y2) dx
Solve the following initial value problem:-
\[x\frac{dy}{dx} - y = \log x, y\left( 1 \right) = 0\]
Solve the following initial value problem:-
\[\frac{dy}{dx} + 2y \tan x = \sin x; y = 0\text{ when }x = \frac{\pi}{3}\]
A population grows at the rate of 5% per year. How long does it take for the population to double?
In a culture, the bacteria count is 100000. The number is increased by 10% in 2 hours. In how many hours will the count reach 200000, if the rate of growth of bacteria is proportional to the number present?
Experiments show that radium disintegrates at a rate proportional to the amount of radium present at the moment. Its half-life is 1590 years. What percentage will disappear in one year?
The rate of increase of bacteria in a culture is proportional to the number of bacteria present and it is found that the number doubles in 6 hours. Prove that the bacteria becomes 8 times at the end of 18 hours.
The solution of the differential equation \[\frac{dy}{dx} - \frac{y\left( x + 1 \right)}{x} = 0\] is given by
Verify that the function y = e−3x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + \frac{dy}{dx} - 6y = 0.\]
Solve the differential equation:
`"x"("dy")/("dx")+"y"=3"x"^2-2`
Find the particular solution of the differential equation `"dy"/"dx" = "xy"/("x"^2+"y"^2),`given that y = 1 when x = 0
Find the differential equation whose general solution is
x3 + y3 = 35ax.
Solve the following differential equation.
`dy /dx +(x-2 y)/ (2x- y)= 0`
Solve the following differential equation.
`dy/dx + y = e ^-x`
The differential equation of `y = k_1e^x+ k_2 e^-x` is ______.
Solve the differential equation xdx + 2ydy = 0
Solve the following differential equation `("d"y)/("d"x)` = x2y + y
For the differential equation, find the particular solution (x – y2x) dx – (y + x2y) dy = 0 when x = 2, y = 0
The function y = ex is solution ______ of differential equation
The function y = cx is the solution of differential equation `("d"y)/("d"x) = y/x`
Solve: `("d"y)/("d"x) = cos(x + y) + sin(x + y)`. [Hint: Substitute x + y = z]
There are n students in a school. If r % among the students are 12 years or younger, which of the following expressions represents the number of students who are older than 12?