Advertisements
Advertisements
प्रश्न
The order of the differential equation whose general solution is given by y = c1 cos (2x + c2) − (c3 + c4) ax + c5 + c6 sin (x − c7) is
विकल्प
3
4
5
2
उत्तर
5
The given equation can be reduced to :
\[y = c_1 \cos(2x + c_2 ) - (c) a^x \times a^{c_5} + c_6 \sin(x - c_7 )\]
\[\text{ where }c = c_3 + c_4\text{ and }a^{c_5}\text{ will be a constant }\]
There are 5 constants \[( c_1 , c_{2,} c, c_6 , c_7 )\]in the given differential equation.
Hence, the order of the differential equation is 5.
APPEARS IN
संबंधित प्रश्न
Write the degree of the differential equation `x^3((d^2y)/(dx^2))^2+x(dy/dx)^4=0`
Determine the order and degree (if defined) of the differential equation:
`(d^2y)/(dx^2)^2 + cos(dy/dx) = 0`
Determine the order and degree (if defined) of the differential equation:
y′ + y = ex
For the differential equation given below, indicate its order and degree (if defined).
`(d^4y)/dx^4 - sin ((d^3y)/(dx^3)) = 0`
For the given below, verify that the given function (implicit or explicit) is a solution to the corresponding differential equation.
`y = xsin 3x : (d^2y)/(dx^2) + 9y - 6 cos 3x = 0`
Write the order and degree of the differential equation
\[y = x\frac{dy}{dx} + a\sqrt{1 + \left( \frac{dy}{dx} \right)^2}\]
Write the order of the differential equation whose solution is y = a cos x + b sin x + c e−x.
The order of the differential equation satisfying
\[\sqrt{1 - x^4} + \sqrt{1 - y^4} = a\left( x^2 - y^2 \right)\] is
Write the sum of the order and degree of the differential equation
\[\left( \frac{d^2 y}{{dx}^2} \right)^2 + \left( \frac{dy}{dx} \right)^3 + x^4 = 0 .\]
Determine the order and degree (if defined) of the following differential equation:-
(y"')2 + (y")3 + (y')4 + y5 = 0
Determine the order and degree of the following differential equation:
`("d"^2"y")/"dx"^2 + ("dy"/"dx")^2 + 7"x" + 5 = 0`
Determine the order and degree of the following differential equation:
`[1 + (dy/dx)^2]^(3/2) = 8(d^2y)/dx^2`
Determine the order and degree of the following differential equation:
`"x" + ("d"^2"y")/"dx"^2 = sqrt(1 + (("d"^2"y")/"dx"^2)^2)`
Determine the order and degree of the following differential equations.
`(d^4y)/dx^4 + [1+(dy/dx)^2]^3 = 0`
Fill in the blank:
Order and degree of a differential equation are always __________ integers.
Order and degree of a differential equation are always positive integers.
Order of highest derivative occurring in the differential equation is called the ______ of the differential equation
Order and degree of differential equation`(("d"^3y)/("d"x^3))^(1/6)`= 9 is ______
Order of highest derivative occurring in the differential equation is called the degree of the differential equation
The order and degree of the differential equation `[1 + ["dy"/"dx"]^3]^(7/3) = 7 (("d"^2"y")/"dx"^2)` are respectively.
The differential equation `x((d^2y)/dx^2)^3 + ((d^3y)/dx^3)^2y = x^2` is of ______
The order of the differential equation of all circles which lie in the first quadrant and touch both the axes is ______.
The order of the differential equation whose general solution is given by `y=C_(1)e^(2x+C_2)+C_3e^x+C_4sin(x+C_5)` is ______.
The order and degree of the differential equation `[1 + ("dy"/"dx")^2]^2 = ("d"^2y)/("d"x^2)` respectively, are ______.
The order of the differential equation of all circles of given radius a is ______.
Write the sum of the order and the degree of the following differential equation:
`d/(dx) (dy/dx)` = 5
The order and degree of the differential equation `[1 + ((dy)/(dx))^3]^(2/3) = 8((d^3y)/(dx^3))` are respectively ______.
If m and n, respectively, are the order and the degree of the differential equation `d/(dx) [((dy)/(dx))]^4` = 0, then m + n = ______.
The differential equation representing the family of curves y2 = `2c(x + sqrt(c))`, where c is a positive parameter, is of ______.
The order and degree of the differential eqµation whose general solution is given by `(d^2y)/(dx^2) + (dy/dx)^50` = In `((d^2y)/dx^2)` respectively, are ______.
If `(a + bx)e^(y/x)` = x then prove that `x(d^2y)/(dx^2) = (a/(a + bx))^2`.
Find the order and degree of the differential equation `(1 + 3 dy/dx)^(2/3) = 4((d^3y)/(dx^3))`.
Assertion: Degree of the differential equation: `a(dy/dx)^2 + bdx/dy = c`, is 3
Reason: If each term involving derivatives of a differential equation is a polynomial (or can be expressed as polynomial) then highest exponent of the highest order derivative is called the degree of the differential equation.
Which of the following is correct?