Advertisements
Advertisements
प्रश्न
If m and n, respectively, are the order and the degree of the differential equation `d/(dx) [((dy)/(dx))]^4` = 0, then m + n = ______.
विकल्प
1
2
3
4
उत्तर
If m and n, respectively, are the order and the degree of the differential equation `d/(dx) [((dy)/(dx))]^4` = 0, then m + n = 3.
Explanation:
The given differential equation is `4 ((dy)/(dx))^3 (d^2y)/(dx^2)` = 0.
Here, m = 2 and n = 1
Hence, m + n = 3
APPEARS IN
संबंधित प्रश्न
Determine the order and degree (if defined) of the differential equation:
y′′′ + 2y″ + y′ = 0
For the differential equation given below, indicate its order and degree (if defined).
`((dy)/(dx))^3 -4(dy/dx)^2 + 7y = sin x`
Write the order of the differential equation
\[1 + \left( \frac{dy}{dx} \right)^2 = 7 \left( \frac{d^2 y}{d x^2} \right)^3\]
Write the degree of the differential equation
\[\frac{d^2 y}{d x^2} + x \left( \frac{dy}{dx} \right)^2 = 2 x^2 \log \left( \frac{d^2 y}{d x^2} \right)\]
Write the degree of the differential equation \[x^3 \left( \frac{d^2 y}{d x^2} \right)^2 + x \left( \frac{dy}{dx} \right)^4 = 0\]
Write the degree of the differential equation \[\left( \frac{d^2 y}{d x^2} \right)^2 + \left( \frac{dy}{dx} \right)^2 = x\sin\left( \frac{dy}{dx} \right)\]
The degree of the differential equation \[\frac{d^2 y}{d x^2} + e^\frac{dy}{dx} = 0\]
Find the sum of the order and degree of the differential equation
\[y = x \left( \frac{dy}{dx} \right)^3 + \frac{d^2 y}{d x^2}\]
Write the sum of the order and degree of the differential equation
\[\left( \frac{d^2 y}{{dx}^2} \right)^2 + \left( \frac{dy}{dx} \right)^3 + x^4 = 0 .\]
Determine the order and degree of the following differential equation:
`(("d"^2"y")/"dx"^2)^2 + cos ("dy"/"dx") = 0`
Determine the order and degree of the following differential equation:
`[1 + (dy/dx)^2]^(3/2) = 8(d^2y)/dx^2`
Determine the order and degree of the following differential equation:
`(("d"^3"y")/"dx"^3)^(1/2) - ("dy"/"dx")^(1/3) = 20`
Determine the order and degree of the following differential equation:
`("d"^2"y")/"dx"^2 + 5 "dy"/"dx" + "y" = "x"^3`
Determine the order and degree of the following differential equations.
`((d^2y)/(dx^2))^2 + ((dy)/(dx))^2 =a^x `
Choose the correct alternative.
The order and degree of `(dy/dx)^3 - (d^3y)/dx^3 + ye^x = 0` are respectively.
Select and write the correct alternative from the given option for the question
The order and degree of `(1 + (("d"y)/("d"x))^3)^(2/3) = 8 ("d"^3y)/("d"x^3)` are respectively
The order of the differential equation of all circles whose radius is 4, is ______.
The order and degree of the differential equation `(dy/dx)^3 + ((d^3y)/dx^3) + xy = 0` are respectively ______
The order of the differential equation of all circles which lie in the first quadrant and touch both the axes is ______.
The differential equation of the family of curves y = ex (A cos x + B sin x). Where A and B are arbitary constants is ______.
The order of the differential equation of all circles of given radius a is ______.
Degree of the differential equation `sqrt(1 + ("d"^2y)/("d"x^2)) = x + "dy"/"dx"` is not defined.
The order and degree of the differential equation `("d"^2y)/("d"x^2) + (("d"y)/("d"x))^(1/4) + x^(1/5)` = 0, respectively, are ______.
The order and degree of the differential equation `(("d"^3y)/("d"x^3))^2 - 3 ("d"^2y)/("d"x^2) + 2(("d"y)/("d"x))^4` = y4 are ______.
The order of differential equation `2x^2 (d^2y)/(dx^2) - 3 (dy)/(dx) + y` = 0 is
The differential equation representing the family of curves y2 = `2c(x + sqrt(c))`, where c is a positive parameter, is of ______.