Advertisements
Advertisements
प्रश्न
Choose the correct alternative.
The order and degree of `(dy/dx)^3 - (d^3y)/dx^3 + ye^x = 0` are respectively.
विकल्प
3, 1
1, 3
3, 3
1, 1
उत्तर
The order and degree of `(dy/dx)^3 - (d^3y)/dx^3 + ye^x = 0`are respectively - 3, 1
APPEARS IN
संबंधित प्रश्न
Write the degree of the differential equation
\[a^2 \frac{d^2 y}{d x^2} = \left\{ 1 + \left( \frac{dy}{dx} \right)^2 \right\}^{1/4}\]
Write the order of the differential equation of all non-horizontal lines in a plane.
Write the degree of the differential equation \[\left( 1 + \frac{dy}{dx} \right)^3 = \left( \frac{d^2 y}{d x^2} \right)^2\]
Find the sum of the order and degree of the differential equation
\[y = x \left( \frac{dy}{dx} \right)^3 + \frac{d^2 y}{d x^2}\]
Determine the order and degree (if defined) of the following differential equation:-
y" + (y')2 + 2y = 0
Determine the order and degree of the following differential equation:
`("d"^2"y")/"dx"^2 + ("dy"/"dx")^2 + 7"x" + 5 = 0`
Determine the order and degree of the following differential equations.
`((d^3y)/dx^3)^(1/6) = 9`
State whether the following is True or False:
The degree of the differential equation `e^((dy)/(dx)) = dy/dx +c` is not defined.
State whether the following statement is True or False:
The degree of a differential equation is the power of highest ordered derivative when all the derivatives are made free from negative and/or fractional indices if any
The differential equation `x((d^2y)/dx^2)^3 + ((d^3y)/dx^3)^2y = x^2` is of ______
The order of the differential equation of all circles which lie in the first quadrant and touch both the axes is ______.
The order of the differential equation of all circles of radius r, having centre on X-axis and passing through the origin is ______.
The degree of the differential equation `("d"^2"y")/("dx"^2) + 3("dy"/"dx")^2 = "x"^2 (("d"^2"y")/("dx"^2))^2` is:
Find the general solution of the following differential equation:
`(dy)/(dx) = e^(x-y) + x^2e^-y`
The degree of the differential equation `((d^2y)/dx^2)^2 + (dy/dx)^3` = ax is 3.
The sum of the order and the degree of the differential equation `d/dx[(dy/dx)^3]` is ______.
Find the order and degree of the differential equation
`sqrt(1 + 1/(dy/dx)^2) = ((d^2y)/(dx^2))^(3/2)`