हिंदी

The order and degree of the differential equation dddddd(d3ydx3)2-3d2ydx2+2(dydx)4 = y4 are ______. - Mathematics

Advertisements
Advertisements

प्रश्न

The order and degree of the differential equation `(("d"^3y)/("d"x^3))^2 - 3 ("d"^2y)/("d"x^2) + 2(("d"y)/("d"x))^4` = y4 are ______.

विकल्प

  • 1, 4

  • 3, 4

  • 3, 4

  • 3, 2

MCQ
रिक्त स्थान भरें

उत्तर

The order and degree of the differential equation `(("d"^3y)/("d"x^3))^2 - 3 ("d"^2y)/("d"x^2) + 2(("d"y)/("d"x))^4` = y4 are 3, 2.

Explanation:

The given differential equation is `(("d"^3y)/("d"x^3))^2 - 3 ("d"^2y)/("d"x^2) + 2(("d"y)/("d"x))^4` = y4 

Here the highest derivative is `("d"^3y)/("d"x^3)`.

∴ The order of the differential equation is 3 and since, the power of the highest order is 2.

∴ Its degree is 2.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 9: Differential Equations - Exercise [पृष्ठ २००]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
अध्याय 9 Differential Equations
Exercise | Q 67 | पृष्ठ २००

वीडियो ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्न

The order of the differential equation `2x^2 (d^2y)/(dx^2) - 3 (dy)/(dx) + y = 0` is ______.


For the given below, verify that the given function (implicit or explicit) is a solution to the corresponding differential equation.

xy = a ex + b e-x + x2 : `x (d^2y)/(dx^2) + 2 dy/dx - xy + x^2 - 2 = 0`


For the given below, verify that the given function (implicit or explicit) is a solution to the corresponding differential equation.

`y = xsin 3x   :   (d^2y)/(dx^2) + 9y - 6 cos 3x = 0`


\[\frac{d^3 y}{d x^3} + \left( \frac{d^2 y}{d x^2} \right)^3 + \frac{dy}{dx} + 4y = \sin x\]

\[\frac{d^2 y}{d x^2} + 5x\left( \frac{dy}{dx} \right) - 6y = \log x\]

Define order of a differential equation.


Write the order and degree of the differential equation
\[y = x\frac{dy}{dx} + a\sqrt{1 + \left( \frac{dy}{dx} \right)^2}\]


The degree of the differential equation \[\frac{d^2 y}{d x^2} + e^\frac{dy}{dx} = 0\]


Write the sum of the order and degree of the differential equation

\[\left( \frac{d^2 y}{{dx}^2} \right)^2 + \left( \frac{dy}{dx} \right)^3 + x^4 = 0 .\]


Determine the order and degree (if defined) of the following differential equation:-

y"' + y2 + ey' = 0


Determine the order and degree of the following differential equation:

`(("d"^2"y")/"dx"^2)^2 + cos ("dy"/"dx") = 0`


Determine the order and degree of the following differential equation:

`"x" + ("d"^2"y")/"dx"^2 = sqrt(1 + (("d"^2"y")/"dx"^2)^2)`


Determine the order and degree of the following differential equation:

`("d"^2"y")/"dx"^2 + 5 "dy"/"dx" + "y" = "x"^3`


Determine the order and degree of the following differential equation:

`(("d"^3"y")/"dx"^3)^2 = root(5)(1 + "dy"/"dx")`


Determine the order and degree of the following differential equations.

`(y''')^2 + 2(y'')^2 + 6y' + 7y = 0`


Determine the order and degree of the following differential equations.

`((d^3y)/dx^3)^(1/6) = 9`


Choose the correct alternative.

The order and degree of `[ 1+ (dy/dx)^3]^(2/3) = 8 (d^3y)/dx^3` are respectively.


State whether the following is True or False:

The power of the highest ordered derivative when all the derivatives are made free from negative and / or fractional indices if any is called order of the differential equation.


The order and degree of `((dy)/(dx))^3 - (d^3y)/(dx^3) + ye^x` = 0 are ______.


Order of highest derivative occurring in the differential equation is called the ______ of the differential equation


State whether the following statement is True or False: 

The degree of a differential equation is the power of highest ordered derivative when all the derivatives are made free from negative and/or fractional indices if any


The degree of the differential equation `("d"^4"y")/"dx"^4 + sqrt(1 + ("dy"/"dx")^4)` = 0 is


The order of the differential equation of all circles which lie in the first quadrant and touch both the axes is ______.


The order of the differential equation of all circles of radius r, having centre on X-axis and passing through the origin is ______.


The degree of the differential equation `("d"^2y)/("d"x^2) + (("d"y)/("d"x))^3 + 6y^5` = 0 is ______.


y2 = (x + c)3 is the general solution of the differential equation ______.


The degree of the differential equation `dy/dx - x = (y - x dy/dx)^-4` is ______.


Find the order and degree of the differential equation

`sqrt(1 + 1/(dy/dx)^2) = ((d^2y)/(dx^2))^(3/2)`


Assertion: Degree of the differential equation: `a(dy/dx)^2 + bdx/dy = c`, is 3

Reason: If each term involving derivatives of a differential equation is a polynomial (or can be expressed as polynomial) then highest exponent of the highest order derivative is called the degree of the differential equation.

Which of the following is correct?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×