हिंदी

The order and degree of (dydx)3-d3ydx3+yex = 0 are ______. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

The order and degree of `((dy)/(dx))^3 - (d^3y)/(dx^3) + ye^x` = 0 are ______.

विकल्प

  • 3, 1

  • 1, 3

  • 3, 3

  • 1, 1

MCQ
रिक्त स्थान भरें

उत्तर

The order and degree of `((dy)/(dx))^3 - (d^3y)/(dx^3) + ye^x` = 0 are 3, 1.

Explanation:

`(dy)/(dx) + x` = c

Highest order derivative

`((d^3y)/(dx^3))^1 + ((d^2y)/(dx^2))^2`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 1.8: Differential Equation and Applications - Q.1

संबंधित प्रश्न

Determine the order and degree (if defined) of the differential equation:

y' + 5y = 0


For the differential equation given below, indicate its order and degree (if defined).

`(d^2y)/dx^2 + 5x(dy/dx)^2 - 6y = log x`


\[\frac{d^3 y}{d x^3} + \left( \frac{d^2 y}{d x^2} \right)^3 + \frac{dy}{dx} + 4y = \sin x\]

\[e^\frac{dy}{dx} = x + 1 ; y\left( 0 \right) = 3\]

Write the degree of the differential equation \[\left( \frac{d^2 y}{d x^2} \right)^2 + \left( \frac{dy}{dx} \right)^2 = x\sin\left( \frac{dy}{dx} \right)\]


Write the order and degree of the differential equation
\[\frac{d^2 y}{d x^2} + \left( \frac{dy}{dx} \right)^\frac{1}{4} + x^\frac{1}{5} = 0\]


If p and q are the order and degree of the differential equation \[y\frac{dy}{dx} + x^3 \frac{d^2 y}{d x^2} + xy\] = cos x, then


Determine the order and degree (if defined) of the following differential equation:-

y"' + 2y" + y' = 0


Determine the order and degree (if defined) of the following differential equation:-

y"' + y2 + ey' = 0


In the following verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation:-

`y=sqrt(1+x^2)`                     `y'=(xy)/(1+x^2)`


In the following verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation:-

y = x sin x              `xy'=y+xsqrt(x^2-y^2)`


Determine the order and degree of the following differential equation:

`[1 + (dy/dx)^2]^(3/2) = 8(d^2y)/dx^2`


Determine the order and degree of the following differential equation:

`("d"^4"y")/"dx"^4 + sin ("dy"/"dx") = 0`


Fill in the blank:

The order of highest derivative occurring in the differential equation is called ___________ of the differential equation.


State whether the following is True or False:

The power of the highest ordered derivative when all the derivatives are made free from negative and / or fractional indices if any is called order of the differential equation.


Find the order and degree of the following differential equation:

`[ (d^3y)/dx^3 + x]^(3/2) = (d^2y)/dx^2`


Select and write the correct alternative from the given option for the question

The order and degree of `(1 + (("d"y)/("d"x))^3)^(2/3) = 8 ("d"^3y)/("d"x^3)` are respectively


Order of highest derivative occurring in the differential equation is called the ______ of the differential equation


Order and degree of differential equation are always ______ integers


The degree of the differential equation `1/2 ("d"^3"y")/"dx"^3 = {1 + (("d"^2"y")/"dx"^2)}^(5/3)` is ______.


The degree of the differential equation `(1 + "dy"/"dx")^3 = (("d"^2y)/("d"x^2))^2` is ______.


The degree of the differential equation `[1 + (("d"y)/("d"x))^2]^(3/2) = ("d"^2y)/("d"x^2)` is ______.


The degree of the differential equation `("d"^2y)/("d"x^2) + "e"^((dy)/(dx))` = 0 is ______.


The order of differential equation `2x^2 (d^2y)/(dx^2) - 3 (dy)/(dx) + y` = 0 is


Write the degree of the differential equation (y''')2 + 3(y") + 3xy' + 5y = 0


y2 = (x + c)3 is the general solution of the differential equation ______.


The order of the differential equation of all parabolas, whose latus rectum is 4a and axis parallel to the x-axis, is ______.


The sum of the order and the degree of the differential equation `d/dx[(dy/dx)^3]` is ______.


The order and the degree of the differential equation `(1 + 3 dy/dx)^2 = 4 (d^3y)/(dx^3)` respectively are ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×