हिंदी

Determine the order and degree of the following differential equation: [1+(dydx)2]32=8d2ydx2 - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Determine the order and degree of the following differential equation:

`[1 + (dy/dx)^2]^(3/2) = 8(d^2y)/dx^2`

योग

उत्तर

The given D.E. is `[1 + (dy/dx)^2]^(3/2) = 8(d^2y)/dx^2`

On squaring both sides, we get

`[1 + (dy/dx)^2]^3 = 8^2.((d^2y)/dx^2)^2`

This D.E. has highest order derivative `(d^2y)/dx^2` with power 2.

∴ The given D.E. has order 2 and degree 2.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: Differential Equations - Exercise 6.1 [पृष्ठ १९३]

वीडियो ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्न

Write the degree of the differential equation `x^3((d^2y)/(dx^2))^2+x(dy/dx)^4=0`


Determine the order and degree (if defined) of the differential equation:

y' + 5y = 0


Determine the order and degree (if defined) of the differential equation:

( y′′′) + (y″)3 + (y′)4 + y5 = 0


Determine the order and degree (if defined) of the differential equation:

y′′′ + 2y″ + y′ = 0


Determine the order and degree (if defined) of the differential equation:

y″ + (y′)2 + 2y = 0


For the differential equation given below, indicate its order and degree (if defined).

`(d^4y)/dx^4 - sin ((d^3y)/(dx^3)) = 0`


For the given below, verify that the given function (implicit or explicit) is a solution to the corresponding differential equation.

`y = xsin 3x   :   (d^2y)/(dx^2) + 9y - 6 cos 3x = 0`


\[\frac{d^3 y}{d x^3} + \left( \frac{d^2 y}{d x^2} \right)^3 + \frac{dy}{dx} + 4y = \sin x\]

\[5\frac{d^2 y}{d x^2} = \left\{ 1 + \left( \frac{dy}{dx} \right)^2 \right\}^{3/2}\]

\[y = px + \sqrt{a^2 p^2 + b^2},\text{ where p} = \frac{dy}{dx}\]

\[\frac{d^2 y}{d x^2} + 3 \left( \frac{dy}{dx} \right)^2 = x^2 \log\left( \frac{d^2 y}{d x^2} \right)\]

\[\frac{dy}{dx} = \left( 1 + x^2 \right)\left( 1 + y^2 \right)\]

Define order of a differential equation.


Write the degree of the differential equation
\[a^2 \frac{d^2 y}{d x^2} = \left\{ 1 + \left( \frac{dy}{dx} \right)^2 \right\}^{1/4}\]


Write the order and degree of the differential equation
\[y = x\frac{dy}{dx} + a\sqrt{1 + \left( \frac{dy}{dx} \right)^2}\]


Write the order of the differential equation of the family of circles touching X-axis at the origin.


Write the degree of the differential equation x \[\left( \frac{d^2 y}{d x^2} \right)^3 + y \left( \frac{dy}{dx} \right)^4 + x^3 = 0\]

 


Write the degree of the differential equation \[\frac{d^2 y}{d x^2} + 3 \left( \frac{dy}{dx} \right)^2 = x^2 \log\left( \frac{d^2 y}{d x^2} \right)\]


Write the degree of the differential equation \[\left( \frac{d^2 y}{d x^2} \right)^2 + \left( \frac{dy}{dx} \right)^2 = x\sin\left( \frac{dy}{dx} \right)\]


Write the order and degree of the differential equation
\[\frac{d^2 y}{d x^2} + \left( \frac{dy}{dx} \right)^\frac{1}{4} + x^\frac{1}{5} = 0\]


The degree of the differential equation \[\left( \frac{d^2 y}{d x^2} \right)^2 - \left( \frac{dy}{dx} \right) = y^3\], is


The degree of the differential equation \[\left\{ 5 + \left( \frac{dy}{dx} \right)^2 \right\}^{5/3} = x^5 \left( \frac{d^2 y}{d x^2} \right)\], is


The order of the differential equation satisfying
\[\sqrt{1 - x^4} + \sqrt{1 - y^4} = a\left( x^2 - y^2 \right)\] is


If p and q are the order and degree of the differential equation \[y\frac{dy}{dx} + x^3 \frac{d^2 y}{d x^2} + xy\] = cos x, then


The degree of the differential equation \[\left( \frac{d^2 y}{d x^2} \right)^3 + \left( \frac{dy}{dx} \right)^2 + \sin\left( \frac{dy}{dx} \right) + 1 = 0\], is


The order of the differential equation \[2 x^2 \frac{d^2 y}{d x^2} - 3\frac{dy}{dx} + y = 0\], is


Determine the order and degree (if defined) of the following differential equation:-

\[\left( \frac{ds}{dt} \right)^4 + 3s\frac{d^2 s}{d t^2} = 0\]


Determine the order and degree (if defined) of the following differential equation:-

y" + (y')2 + 2y = 0


In the following verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation:-

y = x2 + 2x + C            y' − 2x − 2 = 0


Write the order and degree of the differential equation `((d^4"y")/(d"x"^4))^2 =  [ "x" + ((d"y")/(d"x"))^2]^3`.


Write the order and the degree of the following differential equation: `"x"^3 ((d^2"y")/(d"x"^2))^2 + "x" ((d"y")/(d"x"))^4 = 0`


Find the order and the degree of the differential equation `x^2 (d^2y)/(dx^2) = { 1 + (dy/dx)^2}^4`


Determine the order and degree of the following differential equation:

`(dy)/(dx) = (2sin x + 3)/(dy/dx)`


Determine the order and degree of the following differential equation:

`("d"^2"y")/"dx"^2 + ("dy"/"dx")^2 + 7"x" + 5 = 0`


Determine the order and degree of the following differential equation:

(y''')2 + 3y'' + 3xy' + 5y = 0


Determine the order and degree of the following differential equation:

`("d"^2"y")/"dx"^2 + 5 "dy"/"dx" + "y" = "x"^3`


Determine the order and degree of the following differential equation:

`("d"^4"y")/"dx"^4 + sin ("dy"/"dx") = 0`


Determine the order and degree of the following differential equations.

`(d^2x)/(dt^2)+((dx)/(dt))^2 + 8=0`


Determine the order and degree of the following differential equations.

`((d^2y)/(dx^2))^2 + ((dy)/(dx))^2 =a^x `


Determine the order and degree of the following differential equations.

`(d^4y)/dx^4 + [1+(dy/dx)^2]^3 = 0`


Determine the order and degree of the following differential equations.

`(y''')^2 + 2(y'')^2 + 6y' + 7y = 0`


Determine the order and degree of the following differential equations.

`sqrt(1+1/(dy/dx)^2) = (dy/dx)^(3/2)`


Determine the order and degree of the following differential equations.

`((d^3y)/dx^3)^(1/6) = 9`


Fill in the blank:

The order of highest derivative occurring in the differential equation is called ___________ of the differential equation.


Fill in the blank:

Order and degree of a differential equation are always __________ integers.


State whether the following is True or False:

The order of highest derivative occurring in the differential equation is called degree of the differential equation.


State whether the following is True or False:

The power of the highest ordered derivative when all the derivatives are made free from negative and / or fractional indices if any is called order of the differential equation.


Find the order and degree of the following differential equation:

`[ (d^3y)/dx^3 + x]^(3/2) = (d^2y)/dx^2`


Find the order and degree of the following differential equation:

`x+ dy/dx = 1 + (dy/dx)^2`


Select and write the correct alternative from the given option for the question

The order and degree of `(1 + (("d"y)/("d"x))^3)^(2/3) = 8 ("d"^3y)/("d"x^3)` are respectively


State the degree of differential equation `"e"^((dy)/(dx)) + (dy)/(dx)` = x


Order and degree of differential equation are always ______ integers


The degree of the differential equation `("d"^4"y")/"dx"^4 + sqrt(1 + ("dy"/"dx")^4)` = 0 is


The order of the differential equation of all circles whose radius is 4, is ______.


The degree of the differential equation `1/2 ("d"^3"y")/"dx"^3 = {1 + (("d"^2"y")/"dx"^2)}^(5/3)` is ______.


The order and degree of the differential equation `("d"^2"y")/"dx"^2 + (("d"^3"y")/"dx"^3) + x^(1/5) = 0` are respectively.


The order of the differential equation whose general solution is given by `y=C_(1)e^(2x+C_2)+C_3e^x+C_4sin(x+C_5)` is ______.


The order of the differential equation of all circles of radius r, having centre on X-axis and passing through the origin is ______.


The order and degree of the differential equation `[1 + ("dy"/"dx")^2]^2 = ("d"^2y)/("d"x^2)` respectively, are ______.


Order of the differential equation representing the family of parabolas y2 = 4ax is ______.


Degree of the differential equation `sqrt(1 + ("d"^2y)/("d"x^2)) = x + "dy"/"dx"` is not defined.


The order and degree of the differential equation `[1 + ((dy)/(dx))^2] = (d^2y)/(dx^2)` are ______.


Polio drops are delivered to 50 K children in a district. The rate at which polio drops are given is directly proportional to the number of children who have not been administered the drops. By the end of 2nd week half the children have been given the polio drops. How many will have been given the drops by the end of 3rd week can be estimated using the solution to the differential equation `"dy"/"dx" = "k"(50 - "y")` where x denotes the number of weeks and y the number of children who have been given the drops.

State the order of the above given differential equation.


The degree of differential equation `((d^2y)/(dx^2))^3 + ((dy)/(dx))^2 + sin((dy)/(dx)) + 1` = 0 is:


The order of differential equation `2x^2 (d^2y)/(dx^2) - 3 (dy)/(dx) + y` = 0 is


Write the degree of the differential equation (y''')2 + 3(y") + 3xy' + 5y = 0


The order and degree of the differential equation `[1 + ((dy)/(dx))^3]^(2/3) = 8((d^3y)/(dx^3))` are respectively ______.


y2 = (x + c)3 is the general solution of the differential equation ______.


Find the general solution of the following differential equation:

`(dy)/(dx) = e^(x-y) + x^2e^-y`


Determine the order and degree of the following differential equation:

`(d^2y)/(dx^2) + x((dy)/(dx)) + y` = 2 sin x


The degree of the differential equation `dy/dx - x = (y - x dy/dx)^-4` is ______.


The differential equation representing the family of curves y2 = `2c(x + sqrt(c))`, where c is a positive parameter, is of ______.


The degree and order of the differential equation `[1 + (dy/dx)^3]^(7/3) = 7((d^2y)/(dx^2))` respectively are ______.


The order and degree of the differential eqµation whose general solution is given by `(d^2y)/(dx^2) + (dy/dx)^50` = In `((d^2y)/dx^2)` respectively, are ______.


The order and the degree of the differential equation `(1 + 3 dy/dx)^2 = 4 (d^3y)/(dx^3)` respectively are ______.


The degree of the differential equation `[1 + (dy/dx)^2]^3 = ((d^2y)/(dx^2))^2` is ______.


Find the order and degree of the differential equation `(d^2y)/(dx^2) = root(3)(1 - (dy/dx)^4`


Find the order and degree of the differential equation `(1 + 3 dy/dx)^(2/3) = 4((d^3y)/(dx^3))`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×