हिंदी

State whether the following is True or False: The order of highest derivative occurring in the differential equation is called degree of the differential equation. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

State whether the following is True or False:

The order of highest derivative occurring in the differential equation is called degree of the differential equation.

विकल्प

  • True

  • False

MCQ
सत्य या असत्य

उत्तर

The order of highest derivative occurring in the differential equation is called degree of the differential equation. - False

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: Differential Equation and Applications - Miscellaneous Exercise 8 [पृष्ठ १७२]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Commerce) [English] 12 Standard HSC Maharashtra State Board
अध्याय 8 Differential Equation and Applications
Miscellaneous Exercise 8 | Q 3.4 | पृष्ठ १७२

संबंधित प्रश्न

Order and degree of the differential equation `[1+(dy/dx)^3]^(7/3)=7(d^2y)/(dx^2)` are respectively 

(A) 2, 3

(B) 3, 2

(C) 7, 2

(D) 3, 7


For the given below, verify that the given function (implicit or explicit) is a solution to the corresponding differential equation.

`x^2 = 2y^2 log y : (x^2  + y^2) dy/dx - xy = 0`


\[s^2 \frac{d^2 t}{d s^2} + st\frac{dt}{ds} = s\]

\[\left( \frac{dy}{dx} \right)^3 - 4 \left( \frac{dy}{dx} \right)^2 + 7y = \sin x\]

\[\frac{dy}{dx} = \left( 1 + x^2 \right)\left( 1 + y^2 \right)\]

Define order of a differential equation.


Write the order and degree of the differential equation
\[\frac{d^2 y}{d x^2} + \left( \frac{dy}{dx} \right)^\frac{1}{4} + x^\frac{1}{5} = 0\]


The degree of the differential equation \[\frac{d^2 y}{d x^2} + e^\frac{dy}{dx} = 0\]


Determine the order and degree (if defined) of the following differential equation:-

(y"')2 + (y")3 + (y')4 + y5 = 0


Determine the order and degree (if defined) of the following differential equation:-

y" + 2y' + sin y = 0


In the following verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation:-

y = x2 + 2x + C            y' − 2x − 2 = 0


In the following verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation:-

y = cos x + C            y' + sin x = 0


Fill in the blank:

The order of highest derivative occurring in the differential equation is called ___________ of the differential equation.


The order and degree of the differential equation `[1 + ["dy"/"dx"]^3]^(7/3) = 7 (("d"^2"y")/"dx"^2)` are respectively.


The order and degree of the differential equation `("d"^2"y")/"dx"^2 + (("d"^3"y")/"dx"^3) + x^(1/5) = 0` are respectively.


The degree of the differential equation `[1 + (("d"y)/("d"x))^2]^(3/2) = ("d"^2y)/("d"x^2)` is ______.


The degree and order of the differential equation `[1 + (dy/dx)^3]^(7/3) = 7((d^2y)/(dx^2))` respectively are ______.


The sum of the order and the degree of the differential equation `d/dx[(dy/dx)^3]` is ______.


Find the order and degree of the differential equation `(d^2y)/(dx^2) = root(3)(1 - (dy/dx)^4`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×