हिंदी

In the following verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation:- y = x2 + 2x + C y' − 2x − 2 = 0 - Mathematics

Advertisements
Advertisements

प्रश्न

In the following verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation:-

y = x2 + 2x + C            y' − 2x − 2 = 0

योग

उत्तर

We have,
y' − 2x − 2 = 0 .....(1)
Now,
y = x2 + 2x + C
⇒ y' = 2x + 2
Putting the above value in (1), we get
LHS = 2x + 2 − 2x − 2 = 0 = RHS
Thus, y = x2 + 2x + C is the solution of the given differential equation.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 22: Differential Equations - Revision Exercise [पृष्ठ १४४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 22 Differential Equations
Revision Exercise | Q 3.2 | पृष्ठ १४४

वीडियो ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्न

Determine the order and degree (if defined) of the differential equation:

`((ds)/(dt))^4 + 3s  (d^2s)/(dt^2) = 0`


Determine the order and degree (if defined) of the differential equation:

`(d^2y)/(dx^2)` = cos 3x + sin 3x


The degree of the differential equation `((d^2y)/(dx^2))^3 + ((dy)/(dx))^2 + sin ((dy)/(dx)) + 1 = 0` is ______.


For the differential equation given below, indicate its order and degree (if defined).

`(d^2y)/dx^2 + 5x(dy/dx)^2 - 6y = log x`


For the differential equation given below, indicate its order and degree (if defined).

`(d^4y)/dx^4 - sin ((d^3y)/(dx^3)) = 0`


\[\frac{dy}{dx} + e^y = 0\]

\[e^\frac{dy}{dx} = x + 1 ; y\left( 0 \right) = 3\]

Define order of a differential equation.


Write the order of the differential equation
\[1 + \left( \frac{dy}{dx} \right)^2 = 7 \left( \frac{d^2 y}{d x^2} \right)^3\]


Write the order and degree of the differential equation
\[y = x\frac{dy}{dx} + a\sqrt{1 + \left( \frac{dy}{dx} \right)^2}\]


Write the degree of the differential equation
\[\frac{d^2 y}{d x^2} + x \left( \frac{dy}{dx} \right)^2 = 2 x^2 \log \left( \frac{d^2 y}{d x^2} \right)\]


What is the degree of the following differential equation?

\[5x \left( \frac{dy}{dx} \right)^2 - \frac{d^2 y}{d x^2} - 6y = \log x\]

Write the degree of the differential equation \[\left( 1 + \frac{dy}{dx} \right)^3 = \left( \frac{d^2 y}{d x^2} \right)^2\]


In the following verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation:-

`y=sqrt(1+x^2)`                     `y'=(xy)/(1+x^2)`


Determine the order and degree of the following differential equation:

`root(3)(1 +("dy"/"dx")^2) = ("d"^2"y")/"dx"^2`


Determine the order and degree of the following differential equation:

(y''')2 + 3y'' + 3xy' + 5y = 0


Determine the order and degree of the following differential equation:

`(("d"^3"y")/"dx"^3)^(1/2) - ("dy"/"dx")^(1/3) = 20`


Determine the order and degree of the following differential equations.

`(d^2x)/(dt^2)+((dx)/(dt))^2 + 8=0`


Determine the order and degree of the following differential equations.

`(d^4y)/dx^4 + [1+(dy/dx)^2]^3 = 0`


Choose the correct alternative.

The order and degree of `(dy/dx)^3 - (d^3y)/dx^3 + ye^x = 0` are respectively.


Choose the correct alternative.

The order and degree of `[ 1+ (dy/dx)^3]^(2/3) = 8 (d^3y)/dx^3` are respectively.


Fill in the blank:

The power of the highest ordered derivative when all the derivatives are made free from negative and / or fractional indices if any is called __________ of the differential equation.


State whether the following is True or False:

The order of highest derivative occurring in the differential equation is called degree of the differential equation.


Order and degree of differential equation`(("d"^3y)/("d"x^3))^(1/6)`= 9 is ______


State whether the following statement is True or False: 

The degree of a differential equation is the power of highest ordered derivative when all the derivatives are made free from negative and/or fractional indices if any


The degree of the differential equation `("d"^4"y")/"dx"^4 + sqrt(1 + ("dy"/"dx")^4)` = 0 is


The differential equation `x((d^2y)/dx^2)^3 + ((d^3y)/dx^3)^2y = x^2` is of ______ 


The order and degree of the differential equation `(dy/dx)^3 + ((d^3y)/dx^3) + xy = 0` are respectively ______


The order of the differential equation of all circles of radius r, having centre on X-axis and passing through the origin is ______.


The degree of the differential equation `("d"^2y)/("d"x^2) + 3("dy"/"dx")^2 = x^2 log(("d"^2y)/("d"x^2))` is ______.


The order and degree of the differential equation `[1 + ((dy)/(dx))^2] = (d^2y)/(dx^2)` are ______.


The degree of the differential equation `sqrt(1 + (("d"y)/("d"x))^2)` = x is ______.


The order of differential equation `2x^2 (d^2y)/(dx^2) - 3 (dy)/(dx) + y` = 0 is


Determine the order and degree of the following differential equation:

`(d^2y)/(dx^2) + x((dy)/(dx)) + y` = 2 sin x


The differential equation representing the family of curves y2 = `2c(x + sqrt(c))`, where c is a positive parameter, is of ______.


The degree and order of the differential equation `[1 + (dy/dx)^3]^(7/3) = 7((d^2y)/(dx^2))` respectively are ______.


If `(a + bx)e^(y/x)` = x then prove that `x(d^2y)/(dx^2) = (a/(a + bx))^2`.


The degree of the differential equation `[1 + (dy/dx)^2]^3 = ((d^2y)/(dx^2))^2` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×